Architecture

System Boundary

Tile

Check if Tile is
Adjacent

Market Phase 1

Purchase
Raboticon

Phase 2

Player Roboticon

Customise
Robotion

Place Roboticon Phase 3

Buy/Sell

Resources Phase 5

In order to develop an initial structure of the proposed architecture we used a use case
diagram to show, with the help of the requirements, an abstract idea of the typical
actions that a player would carry out during his/her turn. This behavioural model is a
very basic representation that uses the key actions in each turn from the assessment
brief as a basis, it gave us an idea of some of the objects that would be needed in the
game and relationships between them. For instance, placing a roboticon required
interaction with both a tile and a roboticon, therefore we could deduce that the tile
object would have to have an attribute tracking the roboticons that it contained.



UML Class Diagram

EffectUsed

Player
Phase
PlayerlD
Ore PhaseNo
Food TimeLeft
Energy 1 0.1 StartTime
—. Money ‘
ReduceTime()
ResetTime()
VaryResource()
AssignCollege()
0.1 0.1
0.1
0.*
Tile 0.
TilelD Roboticon
XPos
YPos ) RoboticonID:
Graphic OrelLevel
Enndcnémt 0.1 0.*| FoodLevel
nergyCount Z EnergylLevel
OreCount <> ¥
VarylLevel
VaryResource() Se?(r)wner(())
SetOwner()
AssignRoboticon() Landmark
UnassignRoboticon() 0.*
1
0.* 1
Market
’ OreStock
1 FoodStock
Callege EnergyStock
Effect RoboticonStock
1 | Name OreSellPrice
'— CustomName Name FoodSellPrice
Logo 1| Duration EnergySellPrice
IsActive RoboticonSellPrice
ChangeCustomName() O?eBuyPrice
’ FoodBuylPrice
ApplyEffect() EnergyBuyF’nce.
RoboticonBuyPrice
Buy()
Sell()
Gamble()
RandomEffect
ChanceOfEffect




As our software will be object orientated, we decided that the best way to represent the
static architecture of the software abstractly would be through the use of a UML class
diagram. This would allow us to create an overall impression of how the main classes
linked together and any additional attributes/methods that would be required to link
them. UML 2 was the specific language used with the standard notation. [1]

To create the diagram, we used Lucidchart. One of the main reasons for doing so was
because it was compatible with Google Drive which is the platform where all our
documentation was initially stored. Because the software is both free and accessible
online, it meant that no team member would have to download any software to their
own computers or pay any kind of license fee. This meant the whole team could
collaborate on the diagram without any hassle. It also worked like Google Drive in the
sense that because it was stored using cloud storage, multiple users can edit the file at
the same time. This became especially useful when we wanted to collaborate on the
diagram during a team meeting. It also has a full range of shapes from the UML family
that meant we could use standard UML notation and therefore avoid ambiguity on what
shapes meant. It was also very customisable in the sense that it didn’t restrict us on
the amount of abstraction that we wanted to apply. This is because the program simply
supplied the shapes of a UML diagram and didn’t force us to use any kind of syntax. For
instance we didn’t have to decide whether attributes were private or public and what
type they were.

Justification of Model

One of the main objects we realised a player would interact with is the tiles of the map.
As the tiles take on a rectangular appearance in a 4x4 grid as defined by our
requirements, we decided that storing the tiles in a 2D array would be the most
simplistic yet effective method. This is because it meant that the position of each tile
could be determined by its position in the array instead of having attributes to store
the x and y coordinates individually. These tiles would have their attributes,
appearance and position defined before run time as the map isn’t randomly generated
but assembled manually. The tiles will keep track of the player that owns it (if owned)
as well as the roboticons that are stored on it. Due to tiles having the ability to hold
multiple roboticons, it would store them using an array of the roboticon’s ID’s. Tiles can
only be acquired by a player if it’s adjacent to one that they currently own so a method
is needed to acknowledge this, given another tile as the input.

Landmarks have an additional requirement of having their own special abilities so they
would inherit from the tile class. In order to implement this functionality, we realised
an effect class would be needed to created to store and apply the effect. The ‘duration’
attribute will store how long the effect is to be applied for and the ‘isActive’ attribute
will signify whether the effect is currently active. This is because some effects, such as
the College bonuses, may be applicable for the whole game where as another effect, for
instance a landmark bonus, may provide an instant and one off resource boost. Each
effect will be unique and will be applied using the ‘ApplyEffect()’ method.



The game supports two players so there will have to be a player class for each one. The
object for each player will store any data that is unique to them such as the resources
they own and the college they decide to play as. Due to the ‘hot-seat’ nature of the
gameplay the player class will also store whether the player is active or not. This will be
toggled at the end of each round. Like the Tile class, the roboticons that are owned by
the player will be stored as a list of their ID’s.

As each roboticon has unique properties such as it’s level for harvesting each resource,
there would also have to be a class to represent them. The RoboticonID field would be
the key value for each one. The roboticons initially belong to the market, so the
attributes for the owner and the tile that they are stored on will start as being ‘NULL".
Through the process of generating the use case diagram, we also realised a market
object would be needed to store the various prices and stock levels. As there is only one
market, there will only ever be one instance of this class. The only major class it relates
to is the Roboticon class as the market sells roboticons. It can contain zero to infinity of
them as obviously the market can run out of stock of roboticons. It will also supply a
gambling element to the game as specified within the brief. At this moment in time the
exact composition of the gambling mechanic hasn’t been decided yet so it could range
from a simple algorithm to a graphical minigame. However we do know that it will be
run from a method within the market class. As the prices of the resources change
based on the quantity that the market has, there will need to be a method to calculate
these changes that is called before the auction phase. The calculations will be based on
the law of supply and demand.

The random effects that happen during the game will inherit from the effect class as
they differ in the sense that they have a chance of happening variable and can also only
happen once during the game. Each player will have a college that they play as during
the game with its own specific starting tile and unique effect. The name of the college
can be changed by the player however this will be stored as a different attribute so the
key field of the college isn’t changed.

As phases 2 and 3 have distinct time limits, an object for each of them is needed. This
object will also contain the timer that will decrease using the ‘ReduceTime()’ method
that will be called every second to decrease the time by 1. This is due to the time being
stored in seconds also. ‘ResetTime()’ will be called when the player changes so the
timer can be returned to it’s original length that is stored by the ‘StartTime’ attribute.

All of these objects will be created with the use of some kind of core game engine that
we will write ourselves, it will also call the methods for each object based on the core
game elements and the interaction from the user. We felt that given that the engine
object interacts with every other object and also contains them all there wasn’t really
any need to include it in the UML diagram.



[1] "The class diagram", Ibm.com, 2016. [Online]. Available:
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bel
I/. [Accessed: 04- Nov- 2016].



