Model and Method Selection

In keeping with a formal developmental process, the work to be undertaken from this point on will need to be fit
around an engineering model and carried forward by a supplementary methodology. These two terms are often used
interchangeably, but they actually define entirely different things: whereas a model can set “the order of the stages
involved in software development” [9] and the overall criteria for moving between those stages [9], a method will instead
detail exactly how a team can navigate through those stages and meet the aforementioned criteria [9]. This carries the
obvious connotation that developmental methods can only be fit around engineering models, so it was understandably
necessary to take a decision on an appropriate model before implementing and adapting a suitable methodology
around the rest of the project.

Research was made into a variety of models - including the waterfall [9] [10], spiral [9], V-model [10] [11] and
evolutionary models [9] [12], amongst others - and considerations were made on which of them would fit most optimally
around the project’s scope and the upcoming commitments of the development team’s members. Unsurprisingly, each
model had their own appreciable benefits: the waterfall model wouldn’t have required a great deal of planning to
implement because of how linear it is [9] [10], whereas the evolutionary and spiral models cater quite well to changes in
customers’ requirements on account of their iterative components. [9] [12] However, in spite of their advantages, it was
ultimately agreed that all of these traditional models were simply too rigid for a team of our size, experience and
physical proximity to take up without compromising heavily on working efficiency.

The project’s requirements are going to be altered as it progresses, given that many game-design decisions are
typically made after stakeholders test prototypes - and being unable to respond to directional changes because of some
rigorous engineering model’s arbitrary guidelines would severely impact upon the likelihood for a working, well-design
game to be delivered within the project’s strict time-constraints. Furthermore; while documentation will be needed to
create reference points from which further work and decisions can be derived, most traditional models call for
particularly excessive amounts of documentation to be written up [9] [10] [11] [12] (especially about concepts and designs
that end up having absolutely no developmental bearing whatsoever) and it simply wouldn’t be productive to write more
than what is truly necessary to suitably inform all pending design decisions.

As the project concerns the development of a game: a type of product that, unlike a strictly functional
application, can only be assessed subjectively and will differ in perceived “quality” from person-to-person. The game that
comes out of this project will only be as good as what the project’s primary stakeholder deems it to be, so a significant
part of the work that the project carries will basically be dictated by that stakeholder. Traditional models, however, limit
stakeholders’ influences during design and implementation phases [9] [10] [11] [12]: hence, if one was to be adopted for
this project, the potential for our primary stakeholder’s requests to be ignored and for precious time to be wasted on
implementing unrequested features instead would be drastically raised.

Rather than fitting the rest of the project around a traditional model, it would be more suitable to direct it
ourselves by a set of principles with the aim of making it feel as efficient and as flexible as possible to get through.
Hence, the next stage of the project will be fit around the agile philosophy, which is described in the figure that follows.
This is a direct response to the traditional issues of software development that were raised in the last two paragraphs -
as is exhibited by the “agile manifesto” [13] - along with enabling all of us to direct and work on the project in any manner
that we or our primary stakeholder see fit, it should leave the door open for another team to pick up the project and run
with it in whatever manner they may choose to.

AGILE MODEL FOR SOFTWARE DEVELOPMENT [13] [14]

Manifesto [13] Justification [14]
e Individuals and interactions e Itencourages teams to drop formalities and do what they think would be
over processes and tools the best for their respective projects...
This refers to adapting projects e _..and we can do this sensibly because we’re able to communicate
around frequent frequently, both in text and in person
communications and decisions e We don’t want to restrict ourselves to specific roles and/or disciplines
rather than arbitrary rigors when some tasks may take priority over others at certain times
e Working software over e The chances of our requirements changing over time is quite high, and
comprehensive documentation we’d like to adapt to such changes without having to waste so much prior
e Customer collaboration over work and/or documentation
contract negotiation e The project’s limited time-frame necessitates delivering a working game
e Responding to change over over writing excessive documentation
following a plan e We don’t want to dictate the development practices that our successors
will have to follow

Once an agile model was chosen for the project’s procedure, a methodology needed to be fit around it. Once
again, numerous methodologies - including the extreme programming [15] [16], dynamic systems development [17] [18],



feature-driven development [19] [20] and agile unified process methods [21] - were considered, and each had their
appreciable advantages: XP’s focus on responding to user stories is suitably client-centric enough to satisfy our
obligations to the project’s primary stakeholder [15] [16], whereas the DSD and FDD methods each encourage prototyping
and testing to such an extent that could potentially allow for the project’s requirements to be finalised quite early on [17]
[18] [19] [20]. In the end, though, the scrum methodology [22] was chosen for how well it can leverage frequent
communication for productive benefit and for how it could enable the rest of the project to be fit around the team’s
shared university schedule and individual commitments.

SCRUM METHODOLOGY FOR AGILE

MODEL [22] [23]

Description [22]

e Abacklog of tasks to be
done is created and
prioritised appropriately

e The team takes some of
those tasks and decides
on how to complete them

e A“sprint” (in which the
team tries to complete
their selected tasks)
begins

e Daily progress meetings
take place during sprints

e Sprints end with new
product iterations being
shipped, sprint reviews
taking place and new
sprints being planned

e Sprints ensue until all
tasks have been fulfilled,
a deadline arrives or a
project’s resources are
completely depleted

Advantages [23]

o Allows team
members to
remain flexible in
completing
different types of
tasks

e Priorities ensure
that the most
critical work is
done first

e Can quickly
respond to the
addition or
modification of
requirements by
following
additional
iterations

e Development can
be fit around
changing timings
or other
commitments

Disadvantages

Justification

e Additional
requirements
can spiral out
of control

e Places less
emphasis on
customer
relations

® Requires
meetings to
be held very
frequently

The scrum methodology was designed to
help small, tightly-knit teams of
developers to power through projects, so
it fits very comfortably around the
context of this project. By meeting so
regularly (which isn’t an issue for us,
given that we’re undergraduate students
who follow a shared timetable), critical
decisions can be made more quickly and
the work of individual team-members
can be built directly off of one-another,
thereby accelerating the pace of
development. The main disadvantage of
scrum - that being how poorly it reacts
to drastic changes in customers’
requirements - doesn’t present such a
big issue for this project because the
project’s core requirements have already
been set in stone by a supplementary
brief, thereby eliminating the risk of the
team potentially being asked to
effectively build it up from scratch again.

LIST OF PROJECT RESOURCES

Task Product | Use(s) in Project

Version Control GitHub Allows coding work to be reverted if stakeholder requirements change; prevents
unauthorised changes to work (and requires the entire team to approve of any
changes to the game’s master copy); facilitates prototyping through branching

File-Sharing Repository acts as an online source for implementation work, enabling the entire
team to access one-another’s contributions flexibly and independently

Google Drive | Acts as an online source for all non-implementation work and resources, including

documentation and meeting records

Documentation Includes a web-hosted word-processor through which documentation can be
accessed and edited collaboratively

Burn-Down ZenHub Automatically measures task completions over sprints’ durations and uses them

Analysis to generate “burndown charts” showing whether or not sprints are on-track

Task Allows task-lists and sprint-lists to be logged directly within our chosen VCS and

Management our game’s repository, providing flexible access to those backlogs and assisting in
assigning tasks to particular team members

Communication | Slack Provides a reliable way for team members to remain in contact by maintaining a
private online chat-room for the team to access at any time



https://github.com/
https://drive.google.com/
https://www.zenhub.com/
https://slack.com/

UML Modelling LucidChart Partially automates the creation of UML diagrams and use-case diagrams, which
will be required to describe our game’s internal architecture and how the game’s
players will ideally interact with it

Project Planning | Smartsheet | Facilitates the construction of Gantt charts, such as the prototype time-planning
chart that’s referred to in the “Project Plan” section on the next page

Testing Travis Cl Augments our chosen VCS with external servers on which new commits can be
(Following tested prior to being pulled (through an online terminal), preventing the need for
Continuous the files changed in such commits to be downloaded, compiled and tested
Integration)* manually instead

*The outcome of each task will be tested individually through Travis Cl as such outcomes will be required to be
committed to our VCS once they take form

Method Implementation

DRAFT FORMAT OF CHOSEN DEVELOPMENT METHOD | Agile - Scrum

Sprint Length: 6 Days Sprint Starting Day: Wednesday Sprint Meeting Days:
Review Period Length: 1 Day Review Period Day: Tuesday Thursday and Monday

Review Period Tasks:
e Confirm that all sprint tasks have been completed successfully
e Review sprint outcomes and determine any additional tasks that may now need to be completed
o Use the requirements document to do this
Present outcomes of sprint tasks to all relevant stakeholders and confirm their acceptance/feedback
Select tasks for next sprint and assign them to developers
o Use “burn-down” statistics to benchmark progress and factor this into workload decisions
e Setthe length, review period and scrum-master for the next sprint
Perform tests on the whole project by following agreed testing methodologies

Daily Meeting Tasks:
e Scrum-master reviews each team member’s tasks and inquires into the progress made on those tasks
e Scrum-master adds and/or removes sprint tasks from the sprint itinerary based on correspondences
e Team members request assistance from peers or from the scrum-master if it’s needed

Scrum-Master Responsibilities:
e Prevent team members from falling behind in sprints (either due to underperformance or working issues)..
e _orfromcompleting additional work that’s unnecessary in the current sprint
e Assist team members with issues - whether they’re small or large - either by request or personal intuition

Justifications for Implementation Decisions
e Sprints ensue from week-to-week so that they align with the team’s shared university time-table
e Sprints begin on Wednesdays because the team generally has few other commitments to meet on that day,
enabling each sprint to begin with a burst of work
o Also allows review meetings to be scheduled for Tuesdays, on which there are many time-slots over
which the team is typically available to meet
e Sprint meetings are to be held on Thursdays and Mondays, allowing the team to remain synchronised and
up-to-date while also leaving enough time for considerable progress to be made between meetings
Different scrum-master set each week to balance additional scrum-master workloads between colleagues
e Tasks will be set such that each team-member will have roughly the same amount of work to do during each
sprint; this obviously means that different numbers of tasks may be assigned to different team-members (as
some tasks will take more work to complete than other)
o The combined workload warranted by each sprint will be judged using burn-down statistics
o Each task in the project’s backlog will be assigned priorities and weights to help judge individual task
workloads

Project Plan


https://www.lucidchart.com/
https://www.smartsheet.com/
https://travis-ci.com/

The complete timetabled plan for this project is too large to be shown here, so it has been left in the appendix.
What follows on this page is a textual transcription of the plan, complete with priority numbers.

Assessment 2
e Design Formal Architecture (09/11/16 — 09/14/16)
(1) Outline and justify architectural structure
(2) Create detailed UML diagrams and sequence diagrams
(2) Create use-case diagrams for game phases
(2) Finalise personas and scenarios
(3) Consider and choose language(s) to use
nitial Scrum Planning Meeting (15/11/16)
(1) Create tasks from classes in detailed system architecture
(1) Create other requirements-related tasks
(2) Design testing methodology
(3) Select tasks to be completed in first sprint
(3) Set scrum-master for next sprint
e Engage in Sprints (Wednesday — Monday of each week from 16/11/16 — 16/01/17)
o (1) Work on tasks and commit outcomes to the team's VCS if necessary
o (2) Test each committed implementation through continuous integration
o (3) Scrum-master should inquire into progress and help out where necessary
e Hold Sprint Review/Planning Meetings (Tuesday of each week from 22/11/17 — 17/01/17)

[ ]
O O O 0O O - 0 O O O O

o (1) Confirm completion of all tasks in previous sprint
o (1) Review sprint outcomes against criteria, scenarios and intuition
o (1) Test sprint outcomes with stakeholder(s) using requirements and scenarios
o (2) Select tasks to be completed in next sprint
o (2) Set scrum-master for next sprint
e Hold Sprint Progress Meeting (Thursday and Monday of each week from 22/11/16 — 16/01/17)
o (1) Report on progress with sprint tasks to scrum-master
o (2) Modify sprint task-list if necessary
o (2) Opportunity to call scrum-master for assistance on sprint tasks
e Hold Assessment Clearing Meeting (18/01/17)

o (1) Determine work that still needs to be completed
e Assessment Clearing Period (19/01/17 — 24/01/17)

o (1) Complete left-over work

o (2) Update deliverable content for assessment 1

Assessment 3
e Determine and Select Another °
Project (25/01/17 — 26/01/17) °

e Complete Supplementary Work

(27/01/17 — 07/02/17)

o (1) Devise methods for
justifying and implementing
changes

o (2) Review code and GUI of

Assessment 4

Determine and Select Another Project (22/02/17 — 23/02/17)
Complete Supplementary Work (24/02/17 — 07/03/17)

(1) Devise methods for justifying and implementing changes
(2) Review code and GUI of inherited project

(2) Review development methods, tools and approaches

(2) Review management approaches

(3) Update project risk assessment

(3) Review testing methods

O O O 0O O O

inherited project e Hold Sprint Periods to Implement Required Changes (Wednesday
o (2) Review development — Tuesday of each week from 01/03/17 — 11/04/17)
methods, tools and e Update Architecture Report for Inherited Project (12/04/17 —
approaches 18/04/17)
o (2) Review management o (1) Justify any changes made to final solution architecture
approaches o (1) Create supplementary models (inc. UML/sequence
o (3) Update project risk diagrams)
assessment e Complete Final/Acceptance Tests on Inherited Solution (19/04/17
o (3) Review testing methods — 25/04/17)
e Hold Sprint Periods for o (1) Describe formal approach to these tests (against
Development (Wednesday — requirements and for quality)
Tuesday of each week from o (2) Carry out and report on resultant tests
01/02/17 —14/02/17) e Write up final commentary on SEPR assessment (26/04/17 —
e Hold Assessment Clearing 03/05/17)
Meeting (15/02/17) e Create final presentation for inherited game (26/04/17 —

e Assessment Clearing Period
(16/02/17 — 21/02/17)

03/05/17)







