Architecture Report

UML Class Diagram

Due to the size of the UML class diagram, it is hard to read in detail within this pdf document.
Therefore it has also been posted on our project website. It can be found directly by using this link.

https://jm179796.github.io/SEPR/Images/UMLClassDiagram.png

Languages and Tools Used

In order to create the concrete architecture, we decided to use StarUML. This is because it allowed
us to be a lot more specific when describing our architecture. For instance it enabled us to specify
the stereotype of each class such as <<Java Class>>. It is free software and therefore could be used
by all group members whenever they wanted to edit the diagram. It also provides tools specific to
the UML standard that we were using, UML 2. All relationships between classes are
association(denoted by no arrow), dependency(denoted by an arrow) or composition(denoted by a
black diamond). For certain dependencies there is a <<create>> stereotype which signifies that the
dependency is due to an object being created.

The library that we used to develop the game was the libGDX library[1]. Java was the programming
language that, as a group, we felt we were the most familiar with. As a result we decided to
develop the game using Java and libGDX was the library we thought would give us the most
support in doing so. One of the main advantages of this open source library is the documentation
that it provides. All of the powerful features that it enables are fully explained on their website. It
also has the advantage of being abstract by not forcing a specific design upon the developer but
rather to simply provide them with the tools they need to create a variety of programs. All of the
rendering of the game was provided by the library, we simply needed to provide it with what to
render and when.

https://jm179796.github.io/SEPR/Images/UMLClassDiagram.png

UML Class Diagram

<Jarva Class=
SplashScrasn
Baich; Spoteliaich . i Clasas
loge: Sprae e
-prmes Timer Game Game
Selay Intager oo}
*render(foat) “lava Clases
+resize(inesger, Inegar) TiFom
#pauze(] -BMFont. BamagFont
sresumel) TTFGeneraior: Frea ypeGenarator
whda() TTFStyke: FroaTy ator
o) “satFontF loHundlo)
+Hoen): BiamapFont
+satSizofintoger)
sz, Integer
seiBlorter(foat, Colvr)
+horder!
e e Coieat[). Colet
i i)
+satShadowlinteger. Ineges. Color)
+ghadoaCalar(): Color
"
]
1 N “‘.\L P
avar r-
wcreatan ' “ereles, Integer
Integer
“Gaane: Gam N smer. Timer
T T i
! Java Classs -unColour. Cale
bt TeaBuaon o -puseColour Color
.etioFont TTFont eastTime(Integar intage)
-tempFont. TTFRont - +decrementl)
-Drawar: Drawer emiiles(] Inoger
-baich SpritoBatch +seconds]): Integer
background: Sprite stal()
endesifioai)
+1e Termnaathod() Runnable
sresae(loneger, Integer) PTomeMahod)
:'WF-@CI rincrement()
+hid) 1
Sdhapose()
1
reates
—cansinuceT)
- i o Prmebena)) i
AmaThickness: Imogar i
iColor. Color sstFoodConteeahin{intogen)
-imoCeier: Colot g | rsetEnerayCounterVabsalintoger) \ Lo Classn
— +sot0reCounter! Intogor)
< Java Classe e *setficbobonCounterVabe(eger) Game, Gama
Tile. wccgroatlh-upcase Solected T, ifintege) GameScreen. GameScreon
*updatePhaseLabelIntoger) ~players. Player
-Game. Game 1 sclaimTi e Bution -cumenePEpenl) Integer
'&Wﬂum sendTumBunzel): Toates phase: Integer
¥ ‘. fton o
Foodbount loteger O e ot 1| ehoqured Bockean
OreCout g sssictedTieOmmeicon(). Inage Deawer. Orasce
Player . t
“toboticonSiored: Robotoon 1 .;...ﬂ;..".}'f—s.,f " e et
-Runnable: Fur -deseleetTiel) .
“Drases: Dranrer
St ureatem :t:ﬂmﬂ-lwmﬂﬂrm i raboticonl DCaunter: Integer = 0
“octipHeght Intger . InventonyLabeis)
-mr ﬂSpamD:'llng -:m:unmmsn sarichCurentPayer()
lootpTexSpace: eger .
“eltpFalColor: Color e sresumeGame)
ocitpLineColor Color -
-tocitpFant TTFor
toellpAtie boskan wresten
Color % 1 1 1 *
tioBordes Thickness. intoger N =
suchtplcons: Table i A
tieOwnerlcon [mage scurmnelayseiDi} |
- cors s .‘\ “Game: Game. 1 +imae(): CaaTimer
SProducelPlayer) Paye ~rectangia(ShapaTypa. Cokor, nlager, Imager, Insegar, Integar, intager)
+setRusourco(Siring, iniagar) “iledRoctangie{Color, Integer, Integer, Integer, Integer)
+sutOwnes (Playor) “in=ectangie(Color_integes, | Integer. Inkeges, integer)
sgutwmer() +horderedFtectangieColor, Color, Imeger, Integer, Integer, inieger, Inseger)
sehangeOreCountintege) mcomj&imq_T)anm Integer, |
] +debug[Sego)
+changeF oo curi{imicger) ATt Actr oo, St st Bt o, bt e
saonsomontston] T bk s, Gocean, Colr)
i . “anaichT = an,
+getFuncionl Runnabls o
e,
*drawT ookip()
+drawlordar()
+qellD): Integer
sisOwned()
saTileCioiee (C
<tleficederCalor) Color
+hasHobaticanl): baclean
+getRaboticonStored(). Robaticon
1
wlava Classe
Player
oL “piayeriD: meger [« E
Jarva Classe ~oreCount. intages = 0
Roboticon toadCount:Inogar = 0
- Il
~RobabeonlD. Intager (i) “money: & =50
-inventoryRobobcons: Integer = 0 : -zesFocd
'E‘M“LHE‘_" The -college: Java Clazan ks Tediae
: il st Lisi<Tie> Call s nony ToxtButn
Upgrades: g Aive Boate = s — lea “aStochyabel Labl
-on: Image ’ D ocdStockLabel: Labol
o Ticines: Teatus a0 ninger “Name: Sxing aegenabit Labe
-areLevel: Integer = 1. +getTikeList): List<Tile> ~CussomMame: Sing cbobconSiockLabet Labsl
el eger = Integee O Player +engine: GameE:
tocLevel: Integer = 1 1 +eatmany{inieger) g
+gesCreCount): nteger -Logo: image “contrucsntart
Imeges oure])’ Integer L B Iager
suf ; me(mne%a m‘:‘ wmmu: msagrr b1 o mnmﬂnslnﬂn:ag:r
- e { Sui “ Integer
- s o0 e cassapPlayer(Playee) e iRasobconBuyPreinzge)
:-mmm 0 setOreC ouniimeger) Stock(): In
[- +seOreStack(]
~geticonTexturn() Testure e ey Coundnager ~getLoged) bnage ot
+getOreUpgradeCost) inegesr sassignCollegeColege] +getLogeTaxure(): Texure +5etCreSelPrcediniogs)
*guiFonelipgrateCostl). teger “adalaboncan(Roboncan) ~getCreBuyPrce(). Infeger
+gutEremylipgradsCostl): Inbeger +assignTia{Tie) rastreBugPricelinsger)
Integer String, Integer)
scaloulateScorel]. Integer
+nCeRaseRoooNConIMAaNNY() Irkeger
“decr “ L g
+getRobotconinventoey). Ineger 2] Inlagae
+eeCollege). Ci
o neger
+SBIFOUISIOCH(NIGEe)
‘SFoscEdPel) mo:
sgetFoccBuyPrice)). Integer
~setFoodBuyPrcen
+buy{Seing, Iminger, Player): Player
sel(Suing. neger. Flaye] Playee
sqambiai|reager, Player):
+calculateNowCostintgor, Siring): Integer
obaticon(Player). Player
~cansi ons(()

Justification for the Architecture

Note that references in bold signify a requirement reference number that can be found in the RefactoredReql document here
https://github.com/jm179796/SEPR/blob/Assessment2 Docs/Updated%20Assessment%201%20docs/RefactoredReql.pdf

Classes Implemented From Abstract Architecture

Tile
The only removal that we made from the abstract model is the isAdjacent method. This is because there is no longer the
requirement for a player to only be able to acquire tiles adjacent to their own [9.a.ii].

The most substantial change to the Tile Class is that it now extends the button class from the libGDX library. This is
necessary as the ‘Listener’ functionality is required in order to detect when the user clicks on the tile. Each tile needs to
be able to distinguish which player owns it based on its appearance[3.a.i]. Therefore the setBorderColor function is
required to change this using the tileBorderColor attribute. The player’s college icon in the Ul dictated by the
tileOwnerlcon attribute further distinguishes who owns a tile. A tooltip has also helps the player distinguish the tile than
the player is hovering their mouse over. This is implemented with the drawTooltip method. Future builds will show more
information on the tile such as the resources being generated[11]. As the tile implements libGDX functionality, it requires
to know the game state which is stored in the Game attribute. All the tiles are created and stored by the gameEngine
class in an array of size 16[2b].

Player

All functions and elements specified in the abstract UML diagram for the player class have been carried over to the
player class in the concrete architecture. The inventoryRoboticons integer stores how many roboticons have been
purchased from the marke. When a roboticon is deployed this value is decreased and a Roboticon object is created. This
is because roboticon objects are created when they are deployed, because having a tile in their constructor means they
must be assigned to a tile[8c]. There are only ever two player objects active at one time [3] and both are created and
stored by the gameEngine.

Roboticon

The roboticons are not stored in the GameEngine, instead they are held in the roboticonStored attribute of a Tile.
Therefore the roboticon must have a corresponding Tile and thus a Player when created . The roboticons also store an
image showing their current upgrade level[lcii]. The cost of the upgrades for the Roboticons are calculated by the
respective Roboticon object based on it’s level, it is then returned to the GameEngine.

Market

The Market extends the table class as the Market is presented as a table in the HUD[16b]. Because of this, the Market can
store libGDX buttons and labels. These are added using the constructinterface and constructButtons methods. It is
created and stored within the gameEngine.

College

As effects haven’t been implemented yet, there is no effect stored in the class. The only addition is the description
attribute that will be displayed at the college selection screen. The GameEngine creates all of the colleges, they are then
assigned to players if they are selected by the player[13a].

Classes Not Implemented From Abstract Architecture

Phase
The phase class has been made redundant by the GameEngine and GameTimer class. This is due to the GameEngine
storing the current phase and the GameTimer class managing the time..

Effect
Effects weren’t part of the minimum requirements for this stage in the project development and due to time constraints
they weren’t implemented. This also applies to random effects.

Landmark
Not having an effect class also meant that the landmark class couldn’t be implemented at this current time, This is due
to them requiring bonus effects[2.a.iil.

https://github.com/jm179796/SEPR/blob/Assessment2_Docs/Updated%20Assessment%201%20docs/RefactoredReq1.pdf

Classes Not Contained Within Abstract Architecture

Main
This class is required by the libGDX library to initialise the game state, it then simply initialises the SplashScreen class.

SplashScreen
A splashscreen is presented to the user as the game opens displaying the team logo. This class, which extends the
screen, renders the splash screen before opening the main menu.

MainMenu

The main menu is implemented through this class[13] with the extension of the libGDX screen class . It uses the TTFont
class to generate the varying fonts that are displayed. Buttons are displayed using the addTableRow function from the
Drawer class. It then creates the GameScreen class.

GamesScreen

All of the GUI that is presented to the user is created, manipulated and edited here[2]. It presents the game map, the tile
grid and the HUD for each player [2,14,16]. It also allows the user to pause the game with a pause button[19]. All of the
labels and buttons of the game interface are created by this class using the Label and TextButton objects from the
libGDX library respectively. The GameScreen also manipulates the objects on the screen, for instance
updatelnventorylLabels function updates the labels displaying the player’s inventory when their values change. The
GameScreen object initializes the GameEngine and calls it to determine what values are to be displayed on the screen.

GameEngine

Because of the lack of depth of the abstract architecture, as well as the uncertainty of the format that the game would
take(i.e. would it be event driven are a main loop), there was no class present that would maintain the state of the game.
Upon starting to write the program, we quickly realised that this would be essential so we introduced the GameEngine
class. As shown by the UML diagram, the concept of the class is to create and store the different objects within the game.
These include the two players that are participating, the market, the 16 tiles on the grid and the market. We decided that
the program would be event driven, so the GameEngine also handles what happens when different interactions between
the user and the game take place, such as a button being clicked on or a tile being moused over. The GameEngine has
the responsibility of advancing the phases of the game. Because the game is event-driven, the GameEngine advances
phases by actions such as the player pressing the end phase button or the timer ending. This is implemented using the
nextPhase function.

GameTimer

Certain phases are timed[9], therefore a game timer is required to record the time left of the specific phase. This class
uses the timer object from the libGDX library and adds it to a libGDX label. The timer decrements internally and sends its
output to the GameEngine object that it’s associated with. It also has a parameter that determines it’ colour, this is so it
can be hidden on phases that aren’t timed[9]. This is created and stored by the GameEngine.

Drawer

Several methods must be executed in order for objects to be rendered on the screen, therefore to avoid repeating code a
drawer class is needed to create objects that are frequently used such as rectangles. The methods work by taking in
parameters such as dimensions and color before rendering the object on the screen using the shapeRenderer from the
libGDX library.

TTFont

LibGDX requires fonts to be in bitmap format in order to be displayed within the game. Therefore this class is required in
order to convert fonts from .TTF format into bitmap format. It simply takes the .TTF file as well as parameters such as
color and size before generating an object that can be used as a font that libGDX objects can display, All classes that
display font make use of this class.

LabelledElement
A class that allows labels to be recognised as a libGDX actor, the only class that implements it is the GameScreen class.

Overlay

This class implements the upgrade popup screen used to upgrade a roboticon. It extends the stage class due to it being
a popup window rather than an additional screen.

References

(]"libgdx", Libgdx.badlogicgames.com, 2017. [Online]. Available: https://libgdx.badlogicgames.com/.
[Accessed: 22- Jan- 2017].

