
Risk Assessment &
Mitigation
Risk Rating
To determine the overall damage to the project that a risk may have, we applied the likelihood and
impact of the risks via a risk matrix to abstract a ‘risk rating’, ranking them from Low, Medium,
High and Critical:

Likelihood

Impact

Negligible Minor Moderate Major Severe

Very Likely Medium Medium High Critical Critical

Likely Low Medium Medium High Critical

Somewhat
Likely

Low Medium Medium High Critical

Unlikely Low Low Medium Medium High

Very Unlikely Low Low Low Medium High

Impact Definitions

● Negligible - The impact of the risk will only delay the project by a small number of hours
● Minor - The impact of the risk will delay the project by 1-2 days
● Moderate - The impact of the risk will delay the project by 3-5 days
● Major - The impact of the risk will delay the project by 1-2 weeks
● Severe - The impact of the risk will delay the project by 2 or more weeks

Likelihood definitions
● Very Likely - Occurs once a week
● Likely - Occurs once in two weeks
● Somewhat Likely - Occurs once in three weeks
● Unlikely - Occurs once a month
● Very Unlikely - May occur once during the project completion time

Risk format justification
The risks have been formatted into a table consisting of 3 columns; Risk name and description,
Mitigation, and Overall Risk. The rows are sorted into descending order of overall risk rating so
risks that would have the biggest impact are clearly visible and distinguishable. Risks are ranked
by evaluating negative impact to project and likelihood of possibility. The table suggests
mitigation strategies, that would help effectively solve potential problems.

Risks

Risk Mitigation Overall Risk

Ineffective
communication
between group
members

GitHub and Slack allows effective communicate
between group members. Failure to communicate
will have a reason. Schedule a special meeting with
an elected mediator to allow poor communicators
to explain their issue(s) and re-integrate with the
team.

Somewhat
Likely/Severe

Project team
misunderstood
requirements

Following Scrum methodology frequent team
meetings are held and requirements are often
reviewed. Team maintains consistent
communication via Slack and through face-to-face
means.

Somewhat
Likely/Severe

Team members
missing
important team
meetings

Communicating via Slack, ZenHub. Team members
are provided with all necessary information that
they missed. If that person is still missing team
meetings, the problem will be reported to lecturers
to be solved via official channels.

Likely/Major

Inadequate
architecture,
performance and
quality

Simulation created and benchmarking results are
evaluated. Prototype is created to allow tuning of
some required details.

Unlikely/Severe

Deletion of project
code

GitHub minimises the likelihood of complete loss of
code, regular backup via forking to personal
repositories increases redundancy and cloning of
the repository to an offline location before major
changes further reduces risk.

Very
Unlikely/Severe

Final build has low
quality

Prototype developed to test functionality.
Disciplined development process is used. Technical
reviews are used on all requirements, designs, and
code.
Test planning assures all functionality will be
covered by system testing. System tests are
performed by independent testers.

Unlikely/Severe
Impact

Poor project planning Gantt charts alongside our agile development
model (Organised by ZenHub for GitHub) allow us to
establish a clear overview of bottlenecks in the
project and then refactor the plan as we go.

Somewhat
Likely/Major

Certain team
members lack of
specialized skill
required by the
project

Inexperienced team members should find time and
resources to improve needed skills. Different tasks
should be allocated to team members that have
skills to accomplish it.

Likely/Moderate

Project team need to
acquire new skills for

Work plan is rearranged so it includes some time to
gain required skills. No one is left struggling feeling

Likely/Moderate

the project and it
leads to low
productivity

they can’t work on the tasks.

Poor productivity ZenHub for GitHub is used. It shows visual display
of effort that people put in. It indicates team
members that don’t contribute enough. Therefore it
allows to locate and solve an issue fast.

Somewhat
Likely/Moderate

Member of team is
sick and can’t
participate in further
work

Program code is submitted in GitHub therefore the
rest of a the team can continue working. No
member will ever have a 100% share in a mission
critical task. Frequent commits and clear
comments will allow members to compensate for
illness or absence.

Unlikely/Moderate

Team member is
underperforming

Team is rearranging workload and providing any
help if it is necessary, possibly through mediation
meetings

Unlikely/Moderate

Lack of effective
project management

Agile software development technique is going to
be used to manage product development

Unlikely/Moderate

Project progress not
monitored closely
enough

Frequent team meeting are held to review progress.
Gantt and burn-down charts are used to give a
close view of project progress

Unlikely/Major

Project milestones
not clearly defined

Milestones analysed within the planned scrum
meetings, milestones can be re-arranged and
definitions updated within a week of issues arising.

Somewhat Likely/
Moderate Impact

Inexperienced
project managers

If needed different project leader is elected by the
team members

Unlikely/Major

The wrong software
functions are
developed

Customer requirements are analysed. User survey
reviewed. Prototype tested. Discuss and resolve
software issues in meetings.

Somewhat
Likely/Moderate

Continually changing
requirements

Changes are accepted as a fact of software projects.
Prioritisation sessions are scheduled that allow
changes to proceed.

Very Likely/Minor

Incorrect system
requirements

Task descriptions are reviewed frequently. Note that
while our requirements are correct in the context of
our current concept, that concept may change in
the future.

Very LIkely/Minor

Gold plating (added
features are not
useful)

Requirements are frequently reviewed and tasks
are worked on in order of priority. Prototype is
created and tested.

Unlikely/Moderate

Functionality is
complex to
implement

Team meeting is held to discuss the problem and
find solution. Research is done on programming
techniques or available software that would allow
to solve the problem.

Somewhat
Likely/Moderate

Problems to The GitHub pull request system combined with a Somewhat

integrate separate
pieces of code

potential sit down meeting with all developers
affected by the conflict in question will likely
ensure a smooth development process.

Likely/Moderate

Overriding each
other’s work

Over-writing other’s work should only occur after
proper code review enforced by the pull request
system. This review process allows us to ensure any
changes removing or changing others’ work to be
intended and functional.

Unlikely/Major

Internet access is
compromised for a
prolonged period of
time

Whenever a pull request is approved, all team
members should clone the repository’s master
branch so that they can work on the game without
requiring internet access. 4G data-plans can be
activated if necessary to acquire internet
connections.

Very
Unlikely/Severe

Another user gains
unauthorised access
to the GitHub
repository

Take care to avoid sharing login credentials for any
of the university/GitHub accounts that can access
the project’s resources.

Very
Unlikely/Severe

Team member’s local
copies of project files
are compromised
after having been
worked on heavily
(prior to committal)

Submit commits immediately after each task is
completed so that all completed work is backed up
frequently. Use Google Drive to write up
documentation and automatically save it on
Google’s servers.

Unlikely/Major

Created software
code has a bug

Software code is saved on GitHub. It allows to
access previous version of code and locate where
the bug was introduced. A possible integration of
Travis CI will allow immediate testing and
debugging of code.

Very Likely/Minor

User interfaces do
not fit needs

Prototype is created, scenarios are development.
Customer description reviewed.

Likely/Negligible

Inadequate
estimation of
required resources

Frequent meetings are held. If needed additional
resources can be allocated. Tasks can be divided
between more group members if the velocity of one
member is dropping due to tackling a large task
alone.

Unlikely/Minor

