
 

 
Software Engineering Project 

Assessment 4 
Gandhi Inc.  

 

1 
 

Evaluation & Testing Report 

Evaluation 
 

Initially, before we began any work on this part of the project, we went through the previous team’s 

requirements documentation and outlined any requirements which they had marked to be 

implemented but had not. This was so that we knew exactly what we had to implement, as to not 

waste time implementing things that were not necessary to the product brief. These requirements 

were then adapted to fit within our implementation: this is to reduce ambiguity in how a 

requirement may be interpreted.  

For example, when deciding upon how the capture the Chancellor mini game should be developed, 

we decided how the Chancellor would be captured; the player would click the tile the Chancellor 

was currently located in, while the Chancellor would also be frequently changing randomly between 

the tiles to increase the challenge of the mini game. We also decided that the reward for capturing 

the chancellor would be money since this would provide the player with a way of getting 

Roboticons and also buying resources from the market which would help them increase their score. 

During the implementation, we kept 3 lists of tasks that had to be completed; those which had 

been completed; those which were ongoing; and those which were to be started. This was to help 

us keep track of what development stage we were in for the requirements, this therefore gave us a 

good indication of what remaining work was left to do. 

Once all the tasks were completed on the list, we then knew that all the requirements were 

implemented correctly and the brief had been concluded. All that was left to do was testing to 

check that everything was working. 

Testing 
 

For the initial stage of testing, we ran all the unit tests that had already been created by the other 

group, to make sure that all the code that was implemented was working as expected. This ensured 

that none of the requirements or aspects of the brief were missed out. 

 

Types of Testing 
The testing procedure inherited through the previous assessment was not strict. We decided to 

implement strict testing only for our new classes. Once our new classes were implemented with our 

testing passing we deemed the game to be working if it was playable and everything was working as 

it should. Most of the testing was done therefore through unit test and ad hoc testing. 

 

Unit Tests 
Unit tests were used to ensure that each procedure and class was working as expected. Since unit 

tests are used to isolate a piece of code and make sure it behaves as you would expect it to[1]: we 



 

 
Software Engineering Project 

Assessment 4 
Gandhi Inc.  

 

2 
 

decided that this would be a very useful way of testing. Throughout all our implementation, one of 

our main goals was to make everything as modular and reusable as possible so that one part could 

be changed without having massive impacts elsewhere in the code. The unit tests were designed 

with our architecture in mind; given we already knew what functions would exist and the expected 

output from a given input of a function. However, we did not solely use unit tests since we may 

want to change the architecture during the implementation due to unexpected restraints of the 

system that we inherited, as well as changes to the architecture due to refactoring.  

 

Ad-hoc Testing 
We used ad-hoc testing[2] as a way of testing newly implemented parts of the system while we 

were still developing them to make sure that the function’s state and outputs were as expected. 

This allowed us the freedom to implement and try different ways of implementing features while 

we were getting used to the code base that we had inherited from the previous assessment. Then, 

once we were familiar with the code base, we switched to a stricter approach to testing. We 

continued using an ad-hoc approach when we were debugging sections of code; since it was not 

strict, it made it easy to try different things when trying to the fix the bug that was occurring in the 

code. 

 

Continuous Integration 
We used continuous integration throughout the whole of this assessment. Continuous integration is 

where code changes are committed to a repository, in this case our git repository on github, and 

then automated unit tests are run on the current build of the system with the newly committed 

source code [3]. 

This means that when a code change is committed, we will know whether it is performing the 

correct function based upon if the tests passes or fails. If they fail then we can start to debug the 

code and try to find out what is causing the issue, and then proceed to try to fix it by using our ad-

hoc testing approach described above. 

 

Travis-CI 
The software used in order to perform continuous integration on our project was Travis-CI. This was 

because it has excellent Github integration, includes our version control repository and is extremely 

easy to use and understand; therefore, no time was wasted in trying to setup the system. 

Travis-CI builds the system for both the OpenJDK and OracleJDK, which are the two main Java 

Development Kits, so that we know for both versions it build and runs successfully and if one of 

them fails it will inform us as to which one has failed to build and run. The unit tests that have been 

defined to be run by Travis-CI are run on both version of the JDK so that we know the game code 

will perform the same results. This makes it very easy to use with minimal adaptation. 

 

When Travis-CI runs the unit tests, it runs them through the Gradle build tool as to emulate our 

own build process as closely as possible. We are then able to see the console output of the Gradle 



 

 
Software Engineering Project 

Assessment 4 
Gandhi Inc.  

 

3 
 

command so if the tests fail we will be able to identify which test has failed by looking at the output 

from the console. 

 

Quality of Code 
Software was deemed to be of satisfactory quality if it:  

1) Has good comments. 

2) Is easy to read and understand so other people can work with the code if they need to. 

3) Fulfils its purpose based on the requirements documentation. 

4) Passes unit tests that have been written for it. 

5) Passes continuous integration testing with the unit tests that have been written. 

 

It must also be well documented and easy to understand, so when another member of the group 

had to work on the code. This was very common to fix bugs that were detected during testing; or if 

they had to modify it in any way, then the person working on it does not have to spend a large 

amount of their time figuring out how it works, they can simply get on with the change or fix. 

 

 

  



 

 
Software Engineering Project 

Assessment 4 
Gandhi Inc.  

 

4 
 

 

Meeting the requirements 
 

We inherited a game, which had a mostly fully implemented list of requirements. It had support for 

up to nine players including AI players. When the new requirements [4] were released for 

assessment 4, we made sure to add these to the requirements and add them into the game. This 

included a chancellor mini game and the ability to have up to four players along with AI players. 

Seeing as though we already had the four player functionality already implemented in the inherited 

game from the other team, we concentrated on the chancellor requirement.  

We implemented the chancellor mini game by adding an additional stage to phase 3, referred to as 

phase 3.5 in the requirements documentation under requirement 5.1.2. We decided that this 

would occur for every human controlled player during phase 3. During this stage, the chancellor 

would appear on a random tile for half a second and then disappear for another half a second to 

later appear on another random tile and this would happen for a total of 15 seconds. The 

chancellor would be deemed as caught if the player had successfully clicked on the tile that the 

chancellor was occupying. Since the score was calculated at the end of the game by adding up all 

resources the player had, we decided it would be easiest if the reward for capturing the chancellor 

was 50 monetary units. This would give the player an advantage by allowing them to buy and 

upgrade roboticons or extra resources from the market to increase their score. 

Since all of the requirements from the previous team had already been implemented the only 

requirements left to do were those specified by the change in requirements given out at the 

beginning of the assessment, hence why we have only discussed one requirement since multiplayer 

was already completed so only the chancellor mini game was left to complete. 

 

 

 

 

 

References 

 

[1] “Unit Testing”, msdn.microsoft.com, (2017). [Online]. Available: https://msdn.microsoft.com/en-

us/library/aa292197(v=vs.71).aspx. [Accessed: 30-Apr-2017]. 

[2] “Ad Hoc Testing”, Guru99.com, (2017). [Online]. Available: http://www.guru99.com/adhoc-testing.html. [Accessed: 

29-Apr-2017]. 

[3] “What is Continuous Integration? - Amazon Web Services”, Amazon Web Services, Inc., 2017. [Online]. Available: 

https://aws.amazon.com/devops/continuous-integration/. [Accessed: 01-May-2017]. 

[4] W. Wood, et al. (2017, May. 2). “Requirements”. Downloads – Gandhi Inc. – SEPR Project group [Online]. Available: 

http://gandhi-inc.me/downloads/Req4.pdf. [Accessed: 2-May-2017]. 

https://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx
http://www.guru99.com/adhoc-testing.html
https://aws.amazon.com/devops/continuous-integration/
http://gandhi-inc.me/downloads/Req4.pdf

