Software Engineering Project
Assessment 4
Gandbhi Inc.

Evaluation & Testing Report

Evaluation

Initially, before we began any work on this part of the project, we went through the previous team’s
requirements documentation and outlined any requirements which they had marked to be
implemented but had not. This was so that we knew exactly what we had to implement, as to not
waste time implementing things that were not necessary to the product brief. These requirements
were then adapted to fit within our implementation: this is to reduce ambiguity in how a
requirement may be interpreted.

For example, when deciding upon how the capture the Chancellor mini game should be developed,
we decided how the Chancellor would be captured; the player would click the tile the Chancellor
was currently located in, while the Chancellor would also be frequently changing randomly between
the tiles to increase the challenge of the mini game. We also decided that the reward for capturing
the chancellor would be money since this would provide the player with a way of getting
Roboticons and also buying resources from the market which would help them increase their score.

During the implementation, we kept 3 lists of tasks that had to be completed; those which had
been completed; those which were ongoing; and those which were to be started. This was to help
us keep track of what development stage we were in for the requirements, this therefore gave us a
good indication of what remaining work was left to do.

Once all the tasks were completed on the list, we then knew that all the requirements were
implemented correctly and the brief had been concluded. All that was left to do was testing to
check that everything was working.

Testing

For the initial stage of testing, we ran all the unit tests that had already been created by the other
group, to make sure that all the code that was implemented was working as expected. This ensured
that none of the requirements or aspects of the brief were missed out.

Types of Testing

The testing procedure inherited through the previous assessment was not strict. We decided to
implement strict testing only for our new classes. Once our new classes were implemented with our
testing passing we deemed the game to be working if it was playable and everything was working as
it should. Most of the testing was done therefore through unit test and ad hoc testing.

Unit Tests
Unit tests were used to ensure that each procedure and class was working as expected. Since unit
tests are used to isolate a piece of code and make sure it behaves as you would expect it to[1]: we

1

Software Engineering Project
Assessment 4
Gandbhi Inc.

decided that this would be a very useful way of testing. Throughout all our implementation, one of
our main goals was to make everything as modular and reusable as possible so that one part could
be changed without having massive impacts elsewhere in the code. The unit tests were designed
with our architecture in mind; given we already knew what functions would exist and the expected
output from a given input of a function. However, we did not solely use unit tests since we may
want to change the architecture during the implementation due to unexpected restraints of the
system that we inherited, as well as changes to the architecture due to refactoring.

Ad-hoc Testing

We used ad-hoc testing[2] as a way of testing newly implemented parts of the system while we
were still developing them to make sure that the function’s state and outputs were as expected.
This allowed us the freedom to implement and try different ways of implementing features while
we were getting used to the code base that we had inherited from the previous assessment. Then,
once we were familiar with the code base, we switched to a stricter approach to testing. We
continued using an ad-hoc approach when we were debugging sections of code; since it was not
strict, it made it easy to try different things when trying to the fix the bug that was occurring in the
code.

Continuous Integration

We used continuous integration throughout the whole of this assessment. Continuous integration is
where code changes are committed to a repository, in this case our git repository on github, and
then automated unit tests are run on the current build of the system with the newly committed
source code [3].

This means that when a code change is committed, we will know whether it is performing the
correct function based upon if the tests passes or fails. If they fail then we can start to debug the
code and try to find out what is causing the issue, and then proceed to try to fix it by using our ad-
hoc testing approach described above.

Travis-Cl

The software used in order to perform continuous integration on our project was Travis-Cl. This was
because it has excellent Github integration, includes our version control repository and is extremely
easy to use and understand; therefore, no time was wasted in trying to setup the system.

Travis-Cl builds the system for both the OpenJDK and OracleJDK, which are the two main Java
Development Kits, so that we know for both versions it build and runs successfully and if one of
them fails it will inform us as to which one has failed to build and run. The unit tests that have been
defined to be run by Travis-Cl are run on both version of the JDK so that we know the game code
will perform the same results. This makes it very easy to use with minimal adaptation.

When Travis-Cl runs the unit tests, it runs them through the Gradle build tool as to emulate our
own build process as closely as possible. We are then able to see the console output of the Gradle

2

Software Engineering Project
Assessment 4
Gandbhi Inc.

command so if the tests fail we will be able to identify which test has failed by looking at the output
from the console.

Quality of Code

Software was deemed to be of satisfactory quality if it:

1) Has good comments.

2) Is easy to read and understand so other people can work with the code if they need to.
3) Fulfils its purpose based on the requirements documentation.

4) Passes unit tests that have been written for it.

5) Passes continuous integration testing with the unit tests that have been written.

It must also be well documented and easy to understand, so when another member of the group
had to work on the code. This was very common to fix bugs that were detected during testing; or if
they had to modify it in any way, then the person working on it does not have to spend a large
amount of their time figuring out how it works, they can simply get on with the change or fix.

Software Engineering Project
Assessment 4
Gandbhi Inc.

Meeting the requirements

We inherited a game, which had a mostly fully implemented list of requirements. It had support for
up to nine players including Al players. When the new requirements [4] were released for
assessment 4, we made sure to add these to the requirements and add them into the game. This
included a chancellor mini game and the ability to have up to four players along with Al players.
Seeing as though we already had the four player functionality already implemented in the inherited
game from the other team, we concentrated on the chancellor requirement.

We implemented the chancellor mini game by adding an additional stage to phase 3, referred to as
phase 3.5 in the requirements documentation under requirement 5.1.2. We decided that this
would occur for every human controlled player during phase 3. During this stage, the chancellor
would appear on a random tile for half a second and then disappear for another half a second to
later appear on another random tile and this would happen for a total of 15 seconds. The
chancellor would be deemed as caught if the player had successfully clicked on the tile that the
chancellor was occupying. Since the score was calculated at the end of the game by adding up all
resources the player had, we decided it would be easiest if the reward for capturing the chancellor
was 50 monetary units. This would give the player an advantage by allowing them to buy and
upgrade roboticons or extra resources from the market to increase their score.

Since all of the requirements from the previous team had already been implemented the only
requirements left to do were those specified by the change in requirements given out at the
beginning of the assessment, hence why we have only discussed one requirement since multiplayer
was already completed so only the chancellor mini game was left to complete.

References

[1] “Unit Testing”, msdn.microsoft.com, (2017). [Online]. Available: https://msdn.microsoft.com/en-
us/library/aa292197(v=vs.71).aspx. [Accessed: 30-Apr-2017].

[2] “Ad Hoc Testing”, Guru99.com, (2017). [Online]. Available: http://www.guru99.com/adhoc-testing.html. [Accessed:
29-Apr-2017].

[3] “What is Continuous Integration? - Amazon Web Services”, Amazon Web Services, Inc., 2017. [Online]. Available:
https://aws.amazon.com/devops/continuous-integration/. [Accessed: 01-May-2017].

[4] W. Wood, et al. (2017, May. 2). “Requirements”. Downloads — Gandhi Inc. — SEPR Project group [Online]. Available:
http://gandhi-inc.me/downloads/Req4.pdf. [Accessed: 2-May-2017].

https://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx
http://www.guru99.com/adhoc-testing.html
https://aws.amazon.com/devops/continuous-integration/
http://gandhi-inc.me/downloads/Req4.pdf

