
Software Engineering Project: Assessment 2 
Gandhi-Inc. - Project Blind Eye 

	

	 1	

Project	Testing	
	

We	 have	 used	 a	 wide	 variety	 of	 testing	 methods	 and	 approaches	 for	 different	 stages	 of	 our	 project	
development;	hoping	to	use	the	most	appropriate	method	for	each	stage.	We	used	some	methods	outlined	in	
the	“ISO	standard	29119	-	2013”	[1]	and	others	we	found.		

During	the	first	round	of	development,	we	used	ad	Hoc	testing	[2].	This	allowed	us	freedom	to	develop	any	tests	
we	 deemed	 necessary,	 or	 leave	 out	 any	 tests	 we	 felt	 were	 superfluous.	 In	 addition	 to	 this,	 the	 lack	 of	 any	
formally	 defined	 tests	 sped	 up	 the	 development	 process:	 this	 is	 important	 in	 agile	 development	 (the	
methodology	we	are	following)	as	it	allows	us	to	perform	more	development	cycles.		

After	the	initial	development	cycle,	we	moved	on	to	more	formal	testing	procedures.	We	started	by	doing	unit	
tests	on	our	individual	classes.	To	do	this	we	are	using	structure	based	testing	(also	known	as	white-box	testing)	
[4]	as	we	have	written	the	source	code.	This	allows	us	to	develop	more	comprehensive	tests	based	on	how	the	
code	actually	works	rather	than	an	estimate	as	in	black-box	testing.	The	unit	tests	were	written	by	the	people	
who	designed	the	module.	We	used	the	JUnit	test	framework	[3]	to	improve	the	speed	at	which	we	could	write	
the	tests.		

For	 the	 next	 development	 cycle,	 we	 moved	 onto	 integration	 testing	 [1].	 In	 integration	 testing,	 multiple	
components	are	tested	together	to	validate	whether	they	work	correctly	together.		

The	 compatibility	 testing	 of	 our	 game	was	 accomplished	 implicitly;	 we	 are	 using	 both	Windows	 and	 Ubuntu	
Linux	 to	 run	 our	 game	 during	 our	 development	 process,	 this	 means	 that	 we	 can	 accomplish	 testing	 of	 our	
requirement	that	our	game	should	be	able	to	run	on	both	of	these	platforms.	There	was	not	expected	to	be	any	
difficulty	in	this	as	we	are	using	Java,	which	uses	the	Java	Virtual	Machine	to	execute	its	binaries.			

The	test	 that	we	have	written	to	test	 the	requirement	that	“The	game	should	boot	properly	98%	of	the	time,	
after	being	tested	50	times”	[5]	is	an	example	of	smoke	testing.	Smoke	testing	is	a	test	to	determine	if	there	are	
any	catastrophic	failures	in	the	build	of	software.			

It	is	seen	as	one	of	the	most	cost	effective	ways	to	test	code,	it	is	seen	as	an	industry	best	practice.[4]	It	was	a	
relatively	quick	and	easy	test	to	implement,	however	would	have	proved	invaluable	had	there	been	any	failures	
in	the	product.		

The	final	step	of	testing	was	split	into	2	segments:		

● Firstly,	alpha	testing	of	the	product	required	the	product	design	team,	ie	Gandhi	Inc.	,	tested	the	whole	
project	as	a	whole.	Testing	gameplay	to	check	that	there	is	no		bugs/	errors	in	the	gameplay.[6]	

● Secondly,	beta	testing	of	the	project	involved	people	not	involved	in	the	development	process,	testing	
the	product.	

Alpha	testing	is	an	example	of	integration	testing	[1]	as	it	tests	all	completed	systems	running	together	how	they	
should.	Beta	testing	is	also	an	example	of	this,	however	it	also	allows	the	system	to	be	used	in	ways	in	which	the	
development	 team	 may	 not	 have	 intended	 or	 thought	 of.	 This	 provides	 a	 more	 comprehensive	 test	 of	 the	
product.		

	

	 	



Software Engineering Project: Assessment 2 
Gandhi-Inc. - Project Blind Eye 

	

	 2	

Report	on	tests:	
	

Test	for	“Pub	Class”:	

The	pub	class	is	used	for	the	gambling	system,	it	provides,	for	three	different	game	types,	information	which	is	
interpreted	by	the	market	place	on	winnings	or	losses	when	a	user	gambles	any	of	their	money.	As	the	system	
uses	random	numbers,	the	same	input	done	multiple	times	would	produce	different	results.	For	this	reason,	the	

test	for	the	pub	is	different	than	the	rest	of	the	tests.	We	have	used	the	fact	that	 𝑙𝑖𝑚
𝑥→&

∑(output	of	Pub.game)	=	0	

to	test	our	gambling	system.	We	are	running	the	pub	game	1,000,000,000	times	then	dividing	by	1,000,000,000.	
If	the	game	has	an	equal	chance	of	winning	as	it	does	losing,	then	the	result	should	be	very	close	to	zero.		

When	we	performed	 this	 test	on	 the	 class,	 the	 results	we	obtained	was	not	 close	 to	 zero	 indicating	 that	our	
code	was	not	correct.	We	updated	the	code	and	ran	the	test	again,	this	time	getting	the	result	we	expected.	

	

Tests	for	“Roboticon	Class”:	

The	tests	for	the	Roboticon	class	were	written	using	the	JUnit	framework.	

● The	first	test	tests	whether	a	Roboticon	that	has	just	been	created	has	all	zero	values	for	its	properties.		
● Test	2	gives	the	Roboticon	a	base	production	rate,	then	tests	 if	 these	production	rates	were	correctly	

updated	in	the	instance	of	the	roboticon.	
● Test	3	tries	to	ask	for	the	production	rate	of	a	value	that	does	not	exist,	this	should	raise	an	error.	
● Test	4	tries	to	set	the	production	rate	to	a	negative	number,	this	should	raise	an	exception.				
● Test	5	gives	the	robot	new	values	and	then	tests	that	they	have	been	updated	correctly.	
● Test	6	sets	the	specialisation	of	the	roboticon	and	then	tests	if	the	specialisation	has	been	set	correctly.		
● Test	7	gives	the	roboticon	a	plot	then	checks	the	plot	is	correct.	
● As	 the	 roboticon’s	 production	 has	 an	 amount	 of	 variance	 built	 into	 it,	 test	 8	 checks	 whether	 the	

production	rate	of	the	the	roboticon	is	within	this	variance.		
● Test	9	checks	if	an	exception	is	produced	if	you	ask	for	a	production	of	a	resource	that	does	not	exist.	

All	tests	have	passed.		

	

Tests	for	the	“MarketPlace	class”:	

We	have	decided	not	 to	 implement	any	tests	on	trivial	getters	and	setters	 for	 the	market	place	as	 this	would	
take	a	significant	amount	and	provide	little	benefit.	

● Test	1	tests	the	ore	buying	code	by	setting	a	price	to	the	ore	and	then	buying	some	ore.		Test	2	and	3	
are	the	same,	only	they	are	testing	buying	energy	and	roboticons	retrospectively.	

● Test	4	and	5	 test	 the	selling	mechanism	of	 the	system.	They	do	this	by	giving	 the	player	some	ore	or	
energy	and	then	trying	to	sell	to	the	market.	

● Test	5	will	test	production	of	roboticons	by	giving	the	market	ore	but	no	roboticons	to	see	if	 it	makes	
any.		

● Test	6	will	produce	roboticons	based	on	how	much	ore	is	in	the	market	and	test	that	the	right	amount	
of	roboticons	are	produced.		

● Test	7	will	 test	 for	errors	 in	values	that	are	not	allowed,	 for	example,	 if	 the	prices	are	set	to	negative	
numbers.	It	will	also	test	to	make	sure	that	the	player	has	enough	money	to	buy	something.		

Tests	1-6	inclusive	run	and	pass.	Test	7	does	not	pass	as	we	have	not	yet	implemented	the	exchange	rates.		



Software Engineering Project: Assessment 2 
Gandhi-Inc. - Project Blind Eye 

	

	 3	

	

Tests	for	“Player	class”:	

● Test	1	will	create	an	example	player,	give	it	money,	ore,	energy	and	a	name.	It	then	tests	if	the	test	layer	
has	these	values.	

● Test	2	creates	a	plot	and	player	and	assigns	 that	plot	 to	 the	player.	 It	 then	tests	whether	 it	has	been	
assigned	correctly.		

Both	tests	have	passed.		

	

Tests	for	“Game	class”:	

The	test	 for	 the	game	class	produces	2	AI	players	and	plays	the	game	through	with	 just	 the	AI	players	 to	test	
whether	all	of	the	different	components	work	correctly	together.			

The	test	has	passed	

	

Tests	for	the	whole	system:	

In	our	requirements	specification,	there	was	a	requirement	that	the	game	should	boot	correctly	98%	of	the	time	
after	testing	50	times.	We	are	testing	this	using	a	shell	script	that	 loads	the	program	10	times.	This	was	ran	5	
times,	to	give	the	required	50	tests.	This	is	an	example	of	Smoke	testing.		There	haven't	been	any	failures	during	
testing,	therefore	the	game	has	passed	this	test.		

The	test	passed.	

	

We	 are	 also	 using	 Alpha	 and	 Beta	 testing	 to	 test	 the	 completed	 game.	 This	 involved	 the	 team	 and	 outside	
participants	playing	 the	 completed	game	 to	 validate	whether	 there	are	any	bugs	 in	 the	 system.	During	alpha	
testing,	a	bug	was	discovered	in	which,	there	could	be	zero	players	in	the	game,	at	which	point	the	game	would	
crash.	This	has	been	fixed.	

No	bugs	were	found	during	beta	testing.	

Completeness	 of	 testing:	 Our	 tests	 check	 all	 functions	 within	 our	 software	 however	 we	 have	 limited	 error	
handling	tests.	We	expect	more	error	handling	tests	to	be	implemented	later,	as	it	becomes	necessary.		1	

																																																																				
[1]	”ISO/IEC/IEEE	29119:2013”	software	and	systems	engineering	-	software	testing”		
[2]	 "Ad	 hoc	 Testing	 –	 Software	 Testing	 Fundamentals",	 Softwaretestingfundamentals.com.	 [Online].	 Available:	
http://softwaretestingfundamentals.com/ad-hoc-testing/.	[Accessed:	17-	Jan-	2017].	
[3]"JUnit",	Junit.org.	[Online].	Available:	http://junit.org/junit4/.	[Accessed:	17-	Jan-	2017].	
[4]"Guidelines	 for	 Smoke	 Testing",	 Msdn.microsoft.com,	 2017.	 [Online].	 Available:	 https://msdn.microsoft.com/en-
us/library/ms182613(VS.80).aspx.	[Accessed:	21-	Jan-	2017].	
[5]	W.	Wood,	et	al.	 (2016,	Nov.	9).	“Updated	Requirements”.	Downloads	–	Gandhi	 Inc.	–	SEPR	Project	group	[Online].	Available:	
http://gandhi-inc.me/downloads/Gandhi-Inc1.zip.	[Accessed:	Jan.	23,	2017].	
[6]	 "Alpha	 Testing	 Vs	 Beta	 Testing",	 Guru99.com,	 2017.	 [Online].	 Available:	 http://www.guru99.com/alpha-beta-testing-
demystified.html.	[Accessed:	22-	Jan-	2017].	

	


