
	

Software	Engineering	Project:	Assessment	3	

Gandhi-Inc.	-	Project	Blind	Eye 
	

	 1	

Implementation	report	
	
A	number	of	changes	have	been	made	to	the	code,	 including	new	classes	added	and	changes	to	existing	
classes.	 All	 these	 changes	 have	 been	 done	 to	 complete	 requirements	 outlined	 in	 the	 requirements	
document.	 We	 have	 also	 commented	 and	 refactored	 code	 that	 we	 have	 used,	 to	 make	 it	 easier	 for	
subsequent	 teams	 to	use	 the	code.	Please	note	our	 reference	 to	 the	 requirements	has	been	done	 in	 the	
style:	[Req.	13.a.i]	referring	to	Requirement	13.	a.	i.	in	the	Appendix_1.pdf.	

	

New	classes	added	
	

Leaderboard	

To	 implement	 the	 leaderboard,	 we	 created	 2	 new	 classes:	 LeaderboardBackend	 and	
LeaderboardFrontend.	 The	 backend	 class	 handles	 storing	 the	 information	 and	 then	 retrieving	 the	
information	 from	 storage,	 the	 frontend	 handles	 displaying	 the	 information	 stored	 by	 the	 backend.	
Although	 the	 requirements	 [Req.	 13.c.i]	 stated	 we	 should	 display	 the	 top	 5	 scores,	 we	 have	 only	
implemented	the	top	3.	We	decided	to	only	include	the	top	3	as	we	believe	that	3	should	suffice	and	
that	it	will	become	cluttered	displaying	more	than	3	players	who	play	the	game.	The	idea	of	a	top	3	
also	 makes	 it	 more	 exclusive	 for	 those	 with	 the	 highest	 score	 and	 making	 it	 more	 rewarding	 to	
feature	on	the	list.		
	
LeaderboardBackend	

This	 class	 has	 a	 number	 of	 methods	 to	 enable	 storage	 and	 retrieval	 of	 the	 top	 players	 that	 have	
played	the	game.	The	method	“AddPlayerToLeaderboard”	writes	the	player	name	and	score	to	the	file	
“GameSave.txt”.	 This	 allows	 permanent	 storage	 of	 scores.	 To	 access	 the	 stored	 games,	 the	
“ReturnsBestPlayer”	method	 is	 used,	 this	 firstly	 creates	 an	 arraylist	 of	 string	 arrays	 of	 storing	 the	
name	of	each	player	and	the	score	of	each	player.		It	then	finds	the	best	three	scores	from	this	list	and	
returns	an	array	of	string	arrays	containing	the	best	three	players	and	their	information.	
	

LeaderboardFrontend	

This	class	handles	displaying	the	best	three	players.	To	display	this	information,	a	separate	screen	is	
created	which	contains	the	information	required.	This	new	screen	also	stores	the	game	state	in	a	txt	
file,	so	that	this	is	not	lost	when	you	change	screens.	
	
How	To	Play	&	Storyline	

We	 have	 implemented	 a	 how	 to	 play	 class	 and	 screen	 following	 [Req.	 13.b.i].	 	 We	 have	 added	 a	
storyline	to	this	area	following	[Req.	12].	We	have	opted	for	a	brief	written	narrative	to	give	the	user	
some	context	on	how	to	play.	Unfortunately,	we	were	unable	to	implement	the	graphics	as	required	



	

Software	Engineering	Project:	Assessment	3	

Gandhi-Inc.	-	Project	Blind	Eye 
	

	 2	

in	 [Req.	 13.b.ii]	 and	 flipbook-style	 pages	 with	 detailed	 instructions	 [Req.	 13.b.i].	 This	 would	 have	
demanded	 a	 lot	 more	 work	 on	 a	 feature	 we	 thought	 was	 not	 crucial	 to	 the	 game	 play	 or	 the	
satisfaction	of	the	player.	 Instead	we	opted	for	a	 link	to	a	very	easy	follow	pdf	which	is	featured	on	
our	website.	This	pdf	includes	graphics	and	a	a	list	of	instructions	to	explain	the	game	to	the	user.	
	
Gamble	/	Bar	

The	 gambling	 system	 is	 split	 into	 two	 sections,	 the	 frontend,	 and	 a	 backend.	 The	 backend	 has	 2	
important	 classes:	 “PlayRoulette”	 and	 “PlayLuckyDip”.	 Both	 of	 these	 classes	 will	 return	 an	 integer	
relating	to	the	amount	of	money	won	or	lost	if	the	game	is	played	(positive	if	you	win,	negative	if	you	
lose).	 They	use	 the	 java.util.random	 function	 to	decide	 if	a	player	wins	or	 loses.	 These	 features	are	
clearly	following	the	requirement	[Req.	5.d].	
	
The	 front	 end	 provides	 a	 simple	 interface	 for	 the	 player	 to	 play	 pub	 games	 [Req.	 7.d],	 the	 player	
presses	 a	 button	 to	 gamble	 their	 money,	 this	 button	 calls	 the	 back	 end	 functions	 and	 allows	 the	
player	to	win	or	loose	money	based	on	a	random	lucky	number.	We	have	added	an	additional	feature	
which	also	does	not	allow	the	player	into	the	pub	if	they	don’t	have	sufficient	funds	to	play	and	will	
kick	the	player	out	if	they	loose	money	and	thereby	their	funds	are	below	the	minimum	threshold.		
	
Random	Effects	

The	 Random	 Effect	 class	 follows	 the	 previous	 requirement	 update	 set	 in	 Assessment	 2	 [Req.	 6.a],	
which	 offers	 a	 variety	 of	 effects	 ranging	 from	 low	 impact	 to	 larger	 impact.	We	 have	 introduced	 3	
different	 “random	effects”	 to	 cover	 this	 variety	of	 impact	 that	was	 required	by	our	 customer.	 They	
include	a	Trump	appearance	-	blocking	all	production	on	a	specific	tile,	a	Meteor	shower	which	kills	
the	roboticon	on	a	specific	tile,	and	a	solar	flare	which	halves	the	resources	of	a	player.	These	effects	
have	been	implemented	with	both	a	JFrame	notification	to	inform	the	player	of	the	consequences	and	
also	a	visual	graphic	on	the	map.	
	

Changes	to	classes:	
	
Splash	screen	

The	splash	screen	has	been	changed	so	that	instead	of	displaying	the	“duck	related	team	name”	logo.	
It	displays	out	Gandhi-Inc.	logo.	
	
Main	menu	

The	main	menu	has	been	changed	so	 that	when	you	click	 the	“How	To	Play”	button	 it	displays	 the	
How	To	Play	screen	and	when	you	click	the	Leaderboard	button	it	displays	the	leaderboard.	We	have	
also	updated	our	name	to	the	screen	instead	of	Duck	Related	Team	Name.	
	



	

Software	Engineering	Project:	Assessment	3	

Gandhi-Inc.	-	Project	Blind	Eye 
	

	 3	

When	a	user	clicks	“Start”,	there	are	now	JFrame	popups	which	will	allow	the	user	to	Enter	their	name	
and	their	desired	college.	This	is	compliant	with	[Req.	13.a.i]	that	allows	a	user	to	select	a	college.	We	
have	made	 another	 popup	 for	 player	 2	 [Req.	 13.a.iii]	 to	 enter	 their	 details	 and	 enter	 their	 desired	
college	but	have	taken	note	of	[Req.	13.a.iv]	where	they	can’t	select	the	same	college.	
	
We	have	not	 implemented	an	AI	 feature	as	 this	was	not	a	 clear	 requirement	 [Req.	3]	and	 this	also	
required	a	lot	of	additional	work.	Please	see	the	justifications	below	for	further	details	as	to	why	we	
choose	not	to	take	on	this	task.	
	
Tile	

We	have	added	to	the	drawBorder	method,	so	that	the	Color	object	that	is	used	is	the	College	Color	
object.	This	is	not	a	requirement	but	we	have	decided	to	add	it	to	make	it	easier	to	distinguish	which	
player	owns	which	tile.	
	
There	are	also	now	Setters	and	Getters	for	the	wall,	meteor	and	solar	flare	methods.	These	will	state	
whether	a	tile	has	a	wall	or	not	and	can	then	activate	the	image	overlay	on	the	tile	if	it	returns	true.	
	
The	mouse-over	feature	has	now	been	implemented	so	when	the	cursor	is	hovering	above	a	tile	the	
tile	will	now	construct	a	display	which	will	 contain	 the	tile	number,	 the	base	production	of	 that	 tile	
and	 the	 roboticon	 production.	 This	 follows	 the	 [Req.	 11.a].	 The	 upgrade	 levels	 of	 the	 assigned	
roboticon	are	also	displayed	and	automatically	updated	after	each	upgrade	following	[Req.	11b].		
Scoring	

The	requirement	[Req.	4.a]	states	we	should	have	a	scoring	system	based	off	of	resource	amounts	at	
the	 end	 of	 the	 game.	 The	 score	 is	 calculated	 using	 the	 sum	of	 the	 value	 of	 all	 the	 assets	 that	 the	
player	owns.	We	convert	the	resources	into	the	equivalent	money	value	and	then	check	which	player	
has	the	most	money	at	the	end	of	the	game.	
	
	

Justifications	for	changes	to	requirements:	
	
AI	class	

After	 referring	 to	 the	 requirements	 [Req.	 3],	 we	 decided	 that	 implementing	 an	 AI	 class	 was	 not	 a	
feasible	 solution.	The	AI	 feature	would	 require	a	 complete	 rewrite	of	a	 lot	of	 the	game	engine	and	
therefore	 as	 it	was	not	 a	 necessary	 requirement.	 The	previous	 architecture	 does	 not	 support	 an	AI	
class	as	they	require	buttons	to	be	pressed	for	events	to	occur.	For	an	AI	class	to	be	implemented,	we	
would	have	to	rewrite	all	the	architecture	and	make	it	so	that	each	button	calls	a	function	that	an	AI	
can	also	use.	Therefore,	we	have	decided	that	the	AI	feature	should	be	left	out	of	the	requirements.	
	



	

Software	Engineering	Project:	Assessment	3	

Gandhi-Inc.	-	Project	Blind	Eye 
	

	 4	

Keyboard	input	

The	 game	 only	 has	 very	 simple	 tasks,	 therefore	 adding	 keyboard	 shortcuts	 [Req.	 15.a]	 would	
introduce	more	complexity	 to	 the	game	than	 is	necessary.	Currently	 there	are	only	a	 few	buttons	a	
player	needs	to	press	and	having	keyboard	shortcuts	and	inputs	would	contradict	[Req.	1]	to	have	a	
non	 convoluted	 and	 easy	 to	 play	 game	 so	 for	 this	 reason,	we	 have	 decided	 not	 to	 implement	 this	
feature.	There	are	keyboard	 inputs	required	when	entering	a	players	name	but	this	 is	 the	only	time	
the	keyboard	is	used.	
	

Resource	values	

We	 have	 decided	 not	 to	 implement	 [Req.	 14.b.iii]	 and	 [Req.	 2.a.ii]	 since	 a	 variety	 of	 different	
landmarks	would	entail	a	variety	of	different	bonuses,	ultimately	making	the	game	harder	to	balance.	
This	can	lead	to	reducing	enjoyability.	Furthermore,	maintaining	a	coherent	relationship	between	the	
actual	effect	of	the	bonuses	and	the	variety	physical	characteristics	of	the	many	different	landmarks	
would	be	difficult	as	well.	This	would	also	mean	that	[Req.	1]	would	not	be	met.	These	requirements	
would	also	give	a	major	advantage	 to	player	1	who	 is	 able	 to	 choose	a	 tile	 first	making	player	2’s	
disadvantage	extremely	unfair.	
	


