
Model and Method Selection

In keeping with a formal developmental process, subsequent work will need to be fit around an engineering
model and carried forward by a supplementary methodology. The model will set “the order of the stages involved in
software development” [9] and the overall criteria for moving between those stages [9], the method will detail exactly
how a team can navigate through those stages [9]. An appropriate model was chosen before implementing and a
suitable methodology was adapted around the rest of the project.

Research was made into a variety of models such as the waterfall [9] [10], spiral [9], V-model [10] [11] and
evolutionary models [9] [12]; considerations were made on which of them would fit optimally around the project’s scope
and the upcoming commitments of the development team’s members. Each model had benefits: the waterfall model
wouldn’t have required a great deal of planning to implement because of how linear it is [9] [10], whereas the
evolutionary and spiral models cater quite well to changes in customers’ requirements on account of their iterative
components. [9] [12] However, in spite of their advantages, it was agreed that all of these traditional models were too
rigid to take up, for a team of our size, experience and physical proximity, without compromising heavily on working
efficiency.

The project’s requirements are going to be altered as it progresses, given that many game-design decisions are
typically made after stakeholders test prototypes - and being unable to respond to directional changes because of some
rigorous engineering model’s guidelines would severely impact upon the likelihood for a working, well-design game to be
delivered within the project’s time-constraints. Furthermore; while documentation will be needed to create reference
points from which further work and decisions can be derived, most traditional models call for excessive amounts of
documentation [9] [10] [11] [12] (whereby some concepts and designs may be unused in the final project) but pending
design decisions can still be suitably informed with less documentation than what those models require.

As the project concerns the development of a game: unlike a strictly functional application, a game is assessed
subjectively and will differ in perceived “quality” from person-to-person. The game that comes out of this project will only
be as good as what the project’s primary stakeholder deems it to be, so a significant part of the work that the project
carries will be dictated by that stakeholder. Traditional models limit stakeholders’ influences during design and
implementation phases [9] [10] [11] [12]: hence, if one was to be adopted for this project, it would be more likely for our
primary stakeholder’s requests to be ignored and for precious time to be wasted on implementing unrequested features
instead.

Rather than fitting the rest of the project around a traditional model, it would be more suitable to direct it
ourselves by a set of principles with the aim of making it feel as efficient and as flexible as possible to get through.
Hence, the next stage of the project will be fit around the ​agile ​philosophy, which is described in the figure that follows.
This is a direct response to the traditional issues of software development that were raised in the last two paragraphs -
as is exhibited by the “agile manifesto” [13] - along with enabling all of us to direct and work on the project in any manner
that we or our primary stakeholder see fit, it should leave the door open for another team to pick up the project and run
with it in whatever manner they may choose to.

AGILE MODEL FOR SOFTWARE DEVELOPMENT [13] [14]
Manifesto [13]
● Individuals and interactions

over processes and tools
This refers to adapting projects
around frequent
communications and decisions
rather than arbitrary rigors

● Working software ​ over
comprehensive documentation

● Customer collaboration ​ over
contract negotiation

● Responding to change ​ over
following a plan

Justification [14]
● It encourages teams to drop formalities and do what they think would be

the best for their respective projects…
● ...and we can do this sensibly because we’re able to communicate

frequently, both in text and in person
● We don’t want to restrict ourselves to specific roles and/or disciplines

when some tasks may take priority over others at certain times
● The chances of our requirements changing over time is quite high, and

we’d like to adapt to such changes without having to waste so much prior
work and/or documentation

● The project’s limited time-frame necessitates delivering a working game
over writing excessive documentation

● We don’t want to dictate the development practices that our successors
will have to follow

Once an agile model was chosen for the project’s procedure, a methodology needed to be fit around it. Once

again, numerous methodologies - including the extreme programming [15] [16], dynamic systems development [17] [18],
feature-driven development [19] [20] and agile unified process methods [21] - were considered, and each had their
appreciable advantages: XP’s focus on responding to user stories is suitably client-centric enough to satisfy our
obligations to the project’s primary stakeholder [15] [16], whereas the DSD and FDD methods each encourage prototyping
and testing to such an extent that could potentially allow for the project’s requirements to be finalised quite early on [17]

[18] [19] [20]. In the end, though, the ​scrum ​methodology [22] was chosen for how well it can leverage frequent
communication for productive benefit and for how it could enable the rest of the project to be fit around the team’s
shared university schedule and individual commitments.

SCRUM METHODOLOGY FOR AGILE MODEL [22] [23]
Description [22]
● A backlog of tasks to be

done is created and
prioritised appropriately

● The team takes some of
those tasks and decides
on how to complete them

● A “sprint” (in which the
team tries to complete
their selected tasks)
begins

● Daily progress meetings
take place during sprints

● Sprints end with new
product iterations being
shipped, sprint reviews
taking place and new
sprints being planned

● Sprints ensue until all
tasks have been fulfilled,
a deadline arrives or a
project’s resources are
completely depleted

Advantages [23]
● Allows team

members to
remain flexible in
completing
different types of
tasks

● Priorities ensure
that the most
critical work is
done first

● Can quickly
respond to the
addition or
modification of
requirements by
following
additional
iterations

● Development can
be fit around
changing timings
or other
commitments

Disadvantages
● Additional

requirements
can spiral out
of control

● Places less
emphasis on
customer
relations

● Requires
meetings to
be held very
frequently

Justification
The scrum methodology was designed to
help small, tightly-knit teams of
developers to power through projects, so
it fits very comfortably around the
context of this project. By meeting so
regularly (which isn’t an issue for us,
given that we’re undergraduate students
who follow a shared timetable), critical
decisions can be made more quickly and
the work of individual team-members
can be built directly off of one-another,
thereby accelerating the pace of
development. The main disadvantage of
scrum - that being how poorly it reacts
to drastic changes in customers’
requirements - doesn’t present such a
big issue for this project because the
project’s core requirements have already
been set in stone by a supplementary
brief, thereby eliminating the risk of the
team potentially being asked to
effectively build it up from scratch again.

LIST OF PROJECT RESOURCES

Task Product Use(s) in Project

Version Control GitHub Allows coding work to be reverted if stakeholder requirements change; prevents
unauthorised changes to work (and requires the entire team to approve of any
changes to the game’s master copy); facilitates prototyping through branching

File-Sharing Repository acts as an online source for implementation work, enabling the entire
team to access one-another’s contributions flexibly and independently

 Google Drive Acts as an online source for all non-implementation work and resources, including
documentation and meeting records

Documentation Includes a web-hosted word-processor through which documentation can be
accessed and edited collaboratively

Burn-Down
Analysis

ZenHub Automatically measures task completions over sprints’ durations and uses them
to generate “burndown charts” showing whether or not sprints are on-track

Task
Management

Allows task-lists and sprint-lists to be logged directly within our chosen VCS and
our game’s repository, providing flexible access to those backlogs and assisting in
assigning tasks to particular team members

Communication Slack Provides a reliable way for team members to remain in contact by maintaining a
private online chat-room for the team to access at any time

UML Modelling LucidChart Partially automates the creation of UML diagrams and use-case diagrams, which
will be required to describe our game’s internal architecture and how the game’s
players will ideally interact with it

https://github.com/
https://drive.google.com/
https://www.zenhub.com/
https://slack.com/
https://www.lucidchart.com/

Project Planning Smartsheet Facilitates the construction of Gantt charts, such as the prototype time-planning
chart that’s referred to in the “Project Plan” section on the next page

Testing
(Following
Continuous
Integration)*

Travis CI Augments our chosen VCS with external servers on which new commits can be
tested prior to being pulled (through an online terminal), preventing the need for
the files changed in such commits to be downloaded, compiled and tested
manually instead

Build
automation
system

Gradle A build automation system. It was used to support incremental builds by
determining which parts of the build tree are up to date and prevents any tasks
dependant on those parts of build from being re-executed.

Java code editor IntelliJ A Java integrated development environment. It is a convenient tool to edit Java
program code.

Image Editing Pixelmator An image editing software for mac, with the ability to do Pixel drawing and export
to all the file types we needed.

Image Editing Paint.NET An image editing software for windows. This tool was useful when developing the
map for the game screen as it allows images with multiple layers (for buildings,
land, tile grid etc).

*The outcome of each task will be tested individually through ​Travis CI ​ as such outcomes will be required to be

committed to our VCS once they take form

Method Implementation

DRAFT FORMAT OF CHOSEN DEVELOPMENT METHOD​ | ​Agile - Scrum

Sprint Length: ​6 Days Sprint Starting Day: ​Wednesday Sprint Meeting Days:
Review Period Length: ​1 Day Review Period Day: ​Tuesday Thursday and Monday

Review Period Tasks:

● Confirm that all sprint tasks have been completed successfully
● Review sprint outcomes and determine any additional tasks that may now need to be completed

○ Use the requirements document to do this
● Present outcomes of sprint tasks to all relevant stakeholders and confirm their acceptance/feedback
● Select tasks for next sprint and assign them to developers

○ Use “burn-down” statistics to benchmark progress and factor this into workload decisions
● Set the length, review period and scrum-master for the next sprint
● Perform tests on the whole project by following agreed testing methodologies

Daily Meeting Tasks:

● Scrum-master reviews each team member’s tasks and inquires into the progress made on those tasks
● Scrum-master adds and/or removes sprint tasks from the sprint itinerary based on correspondences
● Team members request assistance from peers or from the scrum-master if it’s needed

Scrum-Master Responsibilities:

● Prevent team members from falling behind in sprints (either due to underperformance or working issues)...
● ...or from completing additional work that’s unnecessary in the current sprint
● Assist team members with issues - whether they’re small or large - either by request or personal intuition

Justifications for Implementation Decisions

● Sprints ensue from week-to-week so that they align with the team’s shared university time-table
● Sprints begin on Wednesdays because the team generally has few other commitments to meet on that day,

enabling each sprint to begin with a burst of work
○ Also allows review meetings to be scheduled for Tuesdays, on which there are many time-slots over

which the team is typically available to meet
● Sprint meetings are to be held on Thursdays and Mondays, allowing the team to remain synchronised and

up-to-date while also leaving enough time for considerable progress to be made between meetings
● Different scrum-master set each week to balance additional scrum-master workloads between colleagues
● Tasks will be set such that each team-member will have roughly the same amount of work to do during each

https://www.smartsheet.com/
https://travis-ci.com/
https://gradle.org/getting-started-gradle/
https://www.jetbrains.com/idea/
http://www.pixelmator.com/mac/
http://www.getpaint.net/

sprint; this obviously means that different numbers of tasks may be assigned to different team-members (as
some tasks will take more work to complete than other)

○ The combined workload warranted by each sprint will be judged using burn-down statistics
○ Each task in the project’s backlog will be assigned priorities and weights to help judge individual task

workloads

Project Plan

The complete timetabled plan for this project is too large to be shown here, so it has been left in the appendix.
What follows on this page is a textual transcription of the plan, complete with priority numbers.

A list of instructions with associated priorities has been provided for sprints, including tasks for the scrum

team and scrum master; this has also been done for sprint reviews and progress meetings. It is important to add this
detail so that it is clear what each team member, of a specific team role, must do during sprints of assessment 3 and to
ensure that tasks with a higher priority are completed first. The plan was designed to be more general, in terms of
completing specific tasks, so that it allows room for replanning if something does not work out how it was intended.

Assessment 3
● Determine and Select Another Project (25/01/17 → 30/01/17)
● Complete Supplementary Work (30/01/17 → 31/02/17)

○ (1) Devise methods for justifying and implementing changes
○ (2) Review code and GUI of inherited project
○ (2) Review development methods, tools and approaches
○ (2) Review management approaches
○ (3) Update project risk assessment
○ (3) Review testing methods

● Engage in Sprints (Wednesday → Monday of each week from 01/02/17 → 16/02/17)
○ (1) Work on tasks and commit outcomes to the team's VCS if necessary
○ (2) Test each committed implementation through continuous integration
○ (3) Scrum-master should inquire into progress and help out where necessary

● Hold Sprint Review/Planning Meetings (Tuesday of each week from 07/02/17 ​→ ​14/02/17)
○ (1) Confirm completion of all tasks in previous sprint
○ (2) Select tasks to be completed in next sprint
○ (2) Set scrum-master for next sprint

● Hold Sprint Progress Meeting (Thursday and Monday of each week from 09/02/16 → 16/02/17)
○ (1) Report on progress with sprint tasks to scrum-master
○ (2) Modify sprint task-list if necessary
○ (2) Opportunity to call scrum-master for assistance on sprint tasks

● Hold Assessment Clearing Meeting (17/02/17)
● Assessment Clearing Period (18/02/17 → 21/02/17)

Assessment 4
● Determine and Select Another Project (22/02/17 → 23/02/17)
● Complete Supplementary Work (24/02/17 → 07/03/17)

○ (1) Devise methods for justifying and implementing changes
○ (2) Review code and GUI of inherited project
○ (2) Review development methods, tools and approaches
○ (2) Review management approaches
○ (3) Update project risk assessment
○ (3) Review testing methods

● Hold Sprint Periods to Implement Required Changes (Wednesday → Tuesday of each week from 01/03/17 →
11/04/17)

● Update Architecture Report for Inherited Project (12/04/17 → 18/04/17)
○ (1) Justify any changes made to final solution architecture
○ (1) Create supplementary models (inc. UML/sequence diagrams)

● Complete Final/Acceptance Tests on Inherited Solution (19/04/17 → 25/04/17)
○ (1) Describe formal approach to these tests (against requirements and for quality)
○ (2) Carry out and report on resultant tests

● Write up final commentary on SEPR assessment (26/04/17 → 03/05/17)
● Create final presentation for inherited game (26/04/17 → 03/05/17)

