
Model	and	Method	Selection	
In	 keeping	 with	 a	 formal	 developmental	 process,	 subsequent	 work	 will	 need	 to	 be	 fit	 around	 an	 engineering	

model	 and	 carried	 forward	 by	 a	 supplementary	methodology.	 The	model	will	 set	 “the	 order	 of	 the	 stages	 involved	 in	
software	development”	[9]	and	the	overall	criteria	for	moving	between	those	stages	[9],	the	method	will	detail	exactly	how	
a	 team	 can	 navigate	 through	 those	 stages	 [9].	 An	 appropriate	 model	 was	 chosen	 before	 implementing	and	a	suitable	
methodology	was	adapted	around	the	rest	of	the	project.	

Research	 was	 made	 into	 a	 variety	 of	 models	 such	 as	 the	 waterfall	 [9]	 [10],	 spiral	 [9],	 V-model	 [10]	 [11]	 and	
evolutionary	models	 [9]	 [12];	 considerations	were	made	on	which	of	them	would	fit	optimally	around	the	project’s	scope	and	
the	 upcoming	 commitments	 of	 the	 development	 team’s	 members.	 Each	 model	 had	 benefits:	 the	 waterfall	 model	
wouldn’t	have	 required	a	great	deal	of	planning	 to	 implement	because	of	how	 linear	 it	 is	 [9]	 [10],	whereas	 the	evolutionary	
and	 spiral	 models	 cater	 quite	 well	 to	 changes	 in	 customers’	 requirements	 on	 account	 of	 their	 iterative	components.	 [9]	
[12]	 However,	 in	 spite	 of	 their	 advantages,	 it	was	agreed	that	all	of	 these	 traditional	models	were	 too	rigid	 to	 take	 up,	 for	
a	 team	 of	 our	 size,	 experience	 and	physical	proximity,	without	compromising	heavily	on	working	efficiency.	

The	 project’s	 requirements	 are	 going	 to	 be	 altered	 as	 it	 progresses,	 given	 that	 many	 game-design	 decisions	 are	
typically	 made	 after	 stakeholders	 test	 prototypes	 -	 and	 being	 unable	 to	 respond	 to	 directional	 changes	 because	 of	 some	
rigorous	 engineering	 model’s	 guidelines	 would	 severely	 impact	 upon	 the	 likelihood	 for	 a	 working,	 well-design	 game	 to	 be	
delivered	 within	 the	 project’s	 time-constraints.	 Furthermore;	 while	 documentation	 will	 be	 needed	 to	 create	 reference	
points	 from	 which	 further	 work	 and	 decisions	 can	 be	 derived,	 most	 traditional	 models	 call	 for	 excessive	 amounts	 of	
documentation	 [9]	 [10]	 [11]	 [12]	 (whereby	 some	 concepts	 and	 designs	 may	 be	 unused	 in	 the	 final	 project)	 but	 pending	
design	decisions	can	still	be	suitably	 informed	with	 less	documentation	than	what	 those	models	 require.	

As	 the	 project	 concerns	 the	 development	 of	 a	 game:	 unlike	 a	 strictly	 functional	 application,	 a	 game	 is	 assessed	
subjectively	and	will	differ	in	perceived	“quality”	from	person-to-person.	The	game	that	comes	out	of	this	project	will	only	 be	 as	
good	 as	 what	 the	 project’s	 primary	 stakeholder	 deems	 it	 to	 be,	 so	 a	 significant	 part	 of	 the	 work	 that	 the	 project	carries	
will	 be	 dictated	 by	 that	 stakeholder.	 Traditional	 models	 limit	 stakeholders’	 influences	 during	 design	 and	 implementation	
phases	 [9]	 [10]	[11]	[12]:	hence,	if	one	was	to	be	adopted	for	this	project,	it	would	be	more	likely	for	our	primary	 stakeholder’s	
requests	 to	be	ignored	and	for	precious	time	to	be	wasted	on	implementing	unrequested	features	instead.	

Rather	 than	 fitting	 the	 rest	 of	 the	 project	 around	 a	 traditional	 model,	 it	 would	 be	more	 suitable	 to	 direct	 it	
ourselves	 by	 a	 set	 of	 principles	 with	 the	 aim	 of	 making	 it	 feel	 as	 efficient	 and	 as	 flexible	 as	 possible	 to	 get	 through.	
Hence,	the	next	stage	of	the	project	will	be	fit	around	the	agile	philosophy,	which	is	described	in	the	figure	that	follows.	This	
is	 a	 direct	 response	 to	 the	 traditional	 issues	of	software	development	that	were	raised	in	the	last	two	paragraphs	-	as	is	
exhibited	by	the	“agile	manifesto”	[13]	-	along	with	enabling	all	of	us	to	direct	and	work	on	the	project	in	any	manner	 that	we	
or	our	primary	stakeholder	see	fit,	 it	should	leave	the	door	open	for	another	team	to	pick	up	the	project	and	run	with	it	in	
whatever	manner	they	may	choose	to.	

	

AGILE	MODEL	FOR	SOFTWARE	DEVELOPMENT	[13]	[14]	
Manifesto	[13]	
● Individuals	and	interactions	

over	processes	and	tools	
This	refers	to	adapting	projects	
around	frequent	
communications	and	decisions	
rather	than	arbitrary	rigors	

● Working	software	over	
comprehensive	 documentation	

● Customer	collaboration	over	
contract	negotiation	

● Responding	to	change	over	
following	a	plan	

Justification	[14]	
● It	encourages	teams	to	drop	formalities	and	do	what	they	think	would	be	

the	best	for	their	respective	projects…	

● ...and	we	can	do	this	sensibly	because	we’re	able	to	communicate	
frequently,	both	in	text	and	in	person	

● We	don’t	want	to	restrict	ourselves	to	specific	roles	and/or	disciplines	
when	some	tasks	may	take	priority	over	others	at	certain	times	

● The	chances	of	our	requirements	changing	over	time	is	quite	high,	and	we’d	
like	to	adapt	to	such	changes	without	having	to	waste	so	much	prior	work	
and/or	 documentation	

● The	project’s	limited	time-frame	necessitates	delivering	a	working	game	
over	writing	excessive	documentation	

● We	don’t	want	to	dictate	the	development	practices	that	our	successors	
will	have	to	follow		

Once	 an	 agile	 model	 was	 chosen	 for	 the	 project’s	 procedure,	 a	 methodology	 needed	 to	 be	 fit	 around	 it.	 Once	
again,	 numerous	 methodologies	 -	 including	 the	 extreme	 programming	 [15]	 [16],	 dynamic	 systems	 development	 [17]	 [18],	
feature-driven	 development	 [19]	 [20]	 and	 agile	 unified	 process	methods	 [21]	 -	were	 considered,	 and	 each	 had	 their	appreciable	
advantages:	 XP’s	 focus	 on	 responding	 to	 user	 stories	 is	 suitably	 client-centric	 enough	 to	 satisfy	 our	obligations	 to	 the	project’s	
primary	 stakeholder	 [15]	 [16],	 whereas	 the	 DSD	 and	 FDD	 methods	 each	 encourage	 prototyping	and	 testing	 to	 such	 an	 extent	
that	 could	 potentially	 allow	 for	 the	 project’s	 requirements	 to	 be	 finalised	 quite	 early	 on	 [17]	



[18]	 [19]	 [20].	 In	 the	 end,	 though,	 the	 scrum	 methodology	 [22]	 was	 chosen	 for	 how	 well	 it	 can	 leverage	
frequent	communication	 for	 productive	 benefit	 and	 for	 how	 it	 could	 enable	 the	 rest	 of	 the	 project	to	be	fit	around	
the	team’s	shared	 university	 schedule	 and	 individual	 commitments.	

	

SCRUM	METHODOLOGY	FOR	AGILE	MODEL	[22]	[23]	
Description	[22]	
● A	backlog	of	tasks	to	be	

done	is	created	and	
prioritised	
appropriately	

● The	team	takes	some	of	
those	 tasks	and	decides	
on	 how	 to	 complete	
them	

● A	“sprint”	(in	which	the	
team	 tries	 to	
complete	their	
selected	 tasks)	begins	

● Daily	progress	meetings	
take	place	during	
sprints	

● Sprints	end	with	new	
product	iterations	
being	shipped,	sprint	
reviews	taking	place	
and	new	sprints	being	
planned	

● Sprints	ensue	until	all	
tasks	have	been	fulfilled,	
a	deadline	arrives	or	a	
project’s	resources	are	
completely	 depleted	

Advantages	 [23]	
● Allows	team	

members	to	
remain	flexible	in	
completing	
different	types	of	
tasks	

● Priorities	
ensure	that	the	
most	critical	
work	is	done	
first	

● Can	quickly	
respond	 to	 the	
addition	or	
modification	of	
requirements	
by	following	
additional	
iterations	

● Development	can	
be	fit	around	
changing	timings	
or	other	
commitments	

Disadvantages	
● Additional	

requirement
s	can	spiral	
out	of	
control	

● Places	less	
emphasis	
on	
customer	
relations	

● Requires	
meetings	
to	be	held	
very	
frequently	

Justification	
The	scrum	methodology	was	designed	
to	help	small,	tightly-knit	teams	of	
developers	to	power	through	projects,	
so	it	fits	very	comfortably	around	the	
context	of	this	project.	By	meeting	so	
regularly	(which	isn’t	an	issue	for	us,	
given	 that	we’re	 undergraduate	
students	who	follow	a	shared	
timetable),	critical	decisions	can	be	
made	more	quickly	and	the	work	of	
individual	team-members	can	be	built	
directly	off	of	one-another,	thereby	
accelerating	the	pace	of	development.	
The	main	disadvantage	of	scrum	-	that	
being	how	poorly	it	reacts	
to	drastic	changes	in	customers’	
requirements	-	doesn’t	present	such	a	
big	issue	for	this	project	because	the	
project’s	core	requirements	have	
already	been	set	in	stone	by	a	
supplementary	brief,	thereby	
eliminating	the	risk	of	the	team	
potentially	being	asked	to	effectively	
build	it	up	from	scratch	again.	

	

LIST	OF	PROJECT	RESOURCES	

Task	 Product	 Use(s)	in	Project	

Version	Control	 GitHub	 Allows	coding	work	to	be	reverted	if	stakeholder	requirements	change;	
prevents	unauthorised	changes	to	work	(and	requires	the	entire	team	to	
approve	of	any	changes	to	the	game’s	master	copy);	facilitates	prototyping	
through	branching.	

File-Sharing	 Repository	acts	as	an	online	source	for	implementation	work,	enabling	the	
entire	team	to	access	one-another’s	contributions	flexibly	and	independently	

	 Google	Drive	 Acts	as	an	online	source	for	all	non-implementation	work	and	resources,	
including	documentation	and	meeting	records.	

Documentation	 Includes	a	web-hosted	word-processor	through	which	documentation	can	
be	accessed	and	edited	collaboratively.	

Burn-Down	
Analysis	

ZenHub	 Automatically	measures	task	completions	over	sprints’	durations	and	uses	
them	to	generate	“burndown	charts”	showing	whether	or	not	sprints	are	on-
track.	

Task	
Management	

Allows	task-lists	and	sprint-lists	to	be	logged	directly	within	our	chosen	VCS	and	
our	game’s	repository,	providing	flexible	access	to	those	backlogs	and	assisting	in	
assigning	 tasks	 to	 particular	 team	 members.	

Communication	 Google	
Hangouts	

Provides	a	reliable	way	for	team	members	to	remain	in	contact	by	maintaining	
a	private	online	chat-room	for	the	team	to	access	at	any	time.	

UML	Modelling	 LucidChart	 Partially	 automates	 the	 creation	 of	 UML	 diagrams	 and	 use-case	 diagrams,	
which	will	be	required	to	describe	our	game’s	internal	architecture	and	how	the	
game’s	players	will	ideally	interact	with	it.	



	

Project	Planning	 Smartsheet	 Facilitates	the	construction	of	Gantt	charts,	such	as	the	prototype	time-
planning	chart	that’s	referred	to	in	the	“Project	Plan”	section	on	the	next	page.	

Testing	
(Following	
Continuous	
Integration)*	

Travis	CI	 Augments	our	chosen	VCS	with	external	servers	on	which	new	commits	can	be	
tested	prior	to	being	pulled	(through	an	online	terminal),	preventing	the	need	
for	the	files	changed	in	such	commits	to	be	downloaded,	compiled	and	tested	
manually	instead.	

Build	
automation	
system	

Gradle	 A	build	automation	system.	It	was	used	to	support	incremental	builds	by	
determining	which	parts	of	the	build	tree	are	up	to	date	and	prevents	any	
tasks	dependant	on	those	parts	of	build	from	being	re-executed.	

Java	code	editor	 IntelliJ	 A	Java	integrated	development	environment.	It	is	a	convenient	tool	to	edit	
Java	program	code.	

Image	Editing	 Pixelmator	 An	image	editing	software	for	mac,	with	the	ability	to	do	Pixel	drawing	and	export	
to	all	the	file	types	we	needed.	

Image	Editing	 Paint.NET	 An	image	editing	software	for	windows.	This	tool	was	useful	when	developing	the	
map	for	the	game	screen	as	it	allows	images	with	multiple	layers	(for	buildings,	
land,	tile	grid	etc).	

	

*The	outcome	of	each	task	will	be	tested	individually	through	Travis	CI	as	such	outcomes	will	be	required	to	be	
committed	to	our	VCS	once	they	take	form	

	
	

	

Method	 Implementation	

	
DRAFT	FORMAT	OF	CHOSEN	DEVELOPMENT	METHOD	|	Agile	-	Scrum	

	
Sprint	Length:	6	Days	 Sprint	Starting	Day:	Wednesday	 Sprint	Meeting	Days:	
Review	Period	Length:	1	Day	 Review	Period	Day:	Tuesday	 Thursday	 and	 Monday	

	
Review	Period	Tasks:	

● Confirm	that	all	sprint	tasks	have	been	completed	successfully	
● Review	sprint	outcomes	and	determine	any	additional	tasks	that	may	now	need	to	be	completed	

○ Use	the	requirements	document	to	do	this	
● Present	outcomes	of	sprint	tasks	to	all	relevant	stakeholders	and	confirm	their	acceptance/feedback	
● Select	tasks	for	next	sprint	and	assign	them	to	developers	

○ Use	“burn-down”	statistics	to	benchmark	progress	and	factor	this	into	workload	decisions	
● Set	the	length,	review	period	and	scrum-master	for	the	next	sprint	
● Perform	tests	on	the	whole	project	by	following	agreed	testing	methodologies	

	
Daily	Meeting	Tasks:	

● Scrum-master	reviews	each	team	member’s	tasks	and	inquires	into	the	progress	made	on	those	tasks	
● Scrum-master	adds	and/or	removes	sprint	tasks	from	the	sprint	itinerary	based	on	correspondences	
● Team	members	request	assistance	from	peers	or	from	the	scrum-master	if	it’s	needed	

	
Scrum-Master	Responsibilities:	

● Prevent	team	members	from	falling	behind	in	sprints	(either	due	to	underperformance	or	working	issues)...	
● ...or	from	completing	additional	work	that’s	unnecessary	in	the	current	sprint	
● Assist	team	members	with	issues	-	whether	they’re	small	or	large	-	either	by	request	or	personal	intuition	

	

Justifications	for	Implementation	Decisions	
● Sprints	ensue	from	week-to-week	so	that	they	align	with	the	team’s	shared	university	time-table	
● Sprints	begin	on	Wednesdays	because	the	team	generally	has	 few	other	commitments	 to	meet	on	that	day,	

enabling	each	sprint	to	begin	with	a	burst	of	work	
○ Also	 allows	 review	 meetings	 to	 be	 scheduled	 for	 Tuesdays,	 on	which	 there	 are	many	 time-slots	 over	

which	the	team	is	typically	available	to	meet	
● Sprint	meetings	 are	 to	 be	 held	 on	 Thursdays	 and	Mondays,	allowing	the	team	to	remain	synchronised	and	up-

to-date	while	also	leaving	enough	time	for	considerable	progress	to	be	made	between	meetings	
● Different	scrum-master	set	each	week	to	balance	additional	scrum-master	workloads	between	colleagues	
● Tasks	will	be	set	such	that	each	team-member	will	have	roughly	the	same	amount	of	work	to	do	during	each	



sprint;	 this	 obviously	means	that	different	numbers	of	tasks	may	be	assigned	to	different	team-members	(as	
some	tasks	will	take	more	work	to	complete	than	other)	

○ The	combined	workload	warranted	by	each	sprint	will	be	judged	using	burn-down	statistics	
○ Each	task	in	the	project’s	backlog	will	be	assigned	priorities	and	weights	to	help	judge	individual	task	

workloads	
	
	 	
	

Project	Plan	
	

The	complete	timetabled	plan	for	this	project	is	too	large	to	be	shown	here,	so	it	has	been	left	in	the	appendix.	
What	follows	on	this	page	is	a	textual	transcription	of	the	plan,	complete	with	priority	numbers.	

	
A	list	of	instructions	with	associated	priorities	has	been	provided	for	sprints,	including	tasks	for	the	scrum	team	and	

scrum	master;	this	has	also	been	done	for	sprint	reviews	and	progress	meetings.	It	is	important	to	add	this	detail	so	that	it	
is	clear	what	each	team	member,	of	a	specific	team	role,	must	do	during	sprints	of	assessment	3	and	to	ensure	that	tasks	
with	a	higher	priority	are	completed	first.	The	plan	was	designed	to	be	more	general,	in	terms	of	completing	specific	tasks,	
so	that	it	allows	room	for	replanning	if	something	does	not	work	out	how	it	was	intended.	

	
	
	

	
	

Assessment	4	
● Determine	and	Select	Another	Project	(22/02/17	→	27/02/17)	
● Complete	Supplementary	Work	(27/02/17	→	07/03/17)	

○ (1)	Devise	methods	for	justifying	and	implementing	changes	
○ (2)	Review	code	and	GUI	of	inherited	project	
○ (2)	Review	development	methods,	tools	and	approaches	
○ (2)	Review	management	approaches	
○ (3)	Update	project	risk	assessment	
○ (3)	Review	testing	methods	

● Hold	Sprint	Periods	to	Implement	Required	Changes	(Wednesday	→	Tuesday	of	each	week	from	01/03/17	→	
11/04/17)	

● Update	Architecture	Report	for	Inherited	Project	(12/04/17	→	18/04/17)	
○ (1)	Justify	any	changes	made	to	final	solution	architecture	
○ (1)	Create	supplementary	models	(inc.	UML/sequence	diagrams)	

● Complete	Final/Acceptance	Tests	on	Inherited	Solution	(19/04/17	→	25/04/17)	
○ (1)	Describe	formal	approach	to	these	tests	(against	requirements	and	for	quality)	
○ (2)	Carry	out	and	report	on	resultant	tests	

● Create	final	presentation	for	inherited	game	(26/04/17	→	03/05/17)	
● Update	website	and	make	sure	all	the	technical	information	is	available	(26/04/17	→	03/05/17)	
● Write	up	a	Project	Review	of	the	team	management,	approach,	methods,	tools,	etc.	(26/04/17	→	03/05/17)		


