
Software Engineering Project: Assessment 1	
Gandhi-Inc. - Project Blind World	

	

1	

Methodology	
Outline	of	Methods	
	

The	team	has	decided	on	adopting	Agile	for	a	software	development	methodology.	This	methodology	has	a	
backlog	of	requirements	and	generally	concentrates	on	2-4	week	periods	called	sprints	before	reaching	a	
set	target.	An	outlay	 is	shown	in	figure	1.	The	product	 is	frequently	reviewed,	tested	and	adjusted	where	
necessary	throughout	the	sprint	process.	Scrum	is	an	agile	process	that	allows	the	team	to	concentrate	on	
delivering	a	quality	product	in	a	set	deadline.	Our	team	is	going	to	base	our	methodology	on	Scrum	as	with	
fixed	submission	dates	and	a	list	of	prerequisites	this	would	seem	most	fitting.	

	

Figure	11:	an	illustration	describing	the	Scrum	process.	

		

The	team	can	be	subdivided	into	smaller	groups	working	on	different	tasks	and	then	coming	together	every	
week	to	realign	on	the	project	goals	and	make	sure	we	are	on	track	to	reach	our	targets.	This	allows	the	
team	 to	 self	manage	 and	 to	 prioritize	 key	 features.	 Our	 goal	 is	 to	 integrate	 new	 features	 based	 on	 our	
systematic	plan	in	each	sprint,	this	way	the	focus	can	be	on	enhancing	the	project	for	further	iteration.		

The	scrum	process	is	based	on	a	product	backlog,	this	is	divided	into	different	stages	which	can	then	be	put	
into	the	sprint	process.	Our	list	of	requirements	and	our	planned	schedule	make	up	this	product	backlog.	By	
using	the	scrum	process,	we	aim	to	facilitate	the	group	workflow.	

The	team	 looked	at	alternate	approaches	 including	 the	waterfall	methodology	however	 it	was	concluded	
that	not	having	an	idea	of	the	deliverable	until	the	final	deadline	can	often	lead	to	many	confusions	with	
the	requirements	and	make	the	product	harder	to	sell	at	the	end	of	the	second	deliverable.	

																																																																				
1	 Lakeworks,	 The	 Scrum	 project	 management	 method.	 2009	 [Online].	 Available:	
https://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Scrum_process.svg/2000px-Scrum_process.svg.png	[Accessed:	25-	
Oct-	2016]	



Software Engineering Project: Assessment 1	
Gandhi-Inc. - Project Blind World	

	

2	

Collaboration	Tools	
	

The	team	has	chosen	to	use	Java2	as	the	default	programming	language.	The	team	members	have	all	had	
previous	experience	in	Java	in	the	first	year	at	university.	Java	is	a	high	level	language	allowing	the	team	to	
create	a	range	of	classes	and	objects.	When	implementing	graphics,	the	aim	is	to	use	a	Java	API	to	help	us	
use	this.	

The	 team	 choose	 Github3	 as	 a	 repository	 solution	 to	 store	 all	 of	 our	 code.	 Github	 allows	 users	 to	
collaborate	together	on	a	project	and	to	commit	and	push	new	work	to	the	master	repository.	Github	also	
keeps	a	local	copy	stored	on	any	devices	that	sync	with	the	master.	This	allows	us	to	work	on	the	project	
offline	and	not	have	to	rely	on	the	Github	servers	if	something	were	to	go	wrong.		

Github	 education	 pack	 includes	 a	 free	 domain	 through	 Namecheap4.	 The	 team	 therefore	 registered	 the	
domain	www.gandhi-inc.me	and	pointed	it	to	Github’s	free	hosting.	The	static	website	was	then	drafted	on	
a	Jekyll5	template.	Jekyll	is	written	in	Ruby6	which	is	very	light,	and	great	for	static	websites.	

Google	 Drive7	 and	 Google	 Docs8	 were	 chosen	 to	 store	 our	 documents	 and	 files,	 this	 was	 a	 unanimous	
decision	as	the	University	of	York	supplies	its	students	with	a	student	account	linked	to	the	university	email,	
with	unlimited	storage.	Google	Docs	also	allows	 for	multiple	users	 to	edit	a	document	at	 the	same	time,	
which	means	all	of	us	could	be	working	on	one	document	 together.	A	nice	 feature	 is	also	 the	comments	
and	 suggestions,	 that	 allows	 a	member	 to	 go	 through	 someone	 else’s	work	 and	 suggest	 and	 edit	 to	 the	
group.	

The	team	needed	an	easy	way	to	communicate,	and	seeming	as	though	all	the	members	had	smartphones,	
it	was	clear	an	app	with	push	notifications	was	the	way	to	go.	As	all	team	members	had	a	google	account	
through	 the	 university	 we	 decided	 to	 use	 Google	 Hangouts9.	 It	 is	 accessible	 from	 all	 smartphones	 and	
through	the	web	platform.	

Tiled10	is	a	tile	based	map	editor	which	is	all	open	source.	The	team	have	decided	this	would	be	a	great	tool	
to	use	to	make	a	2D	map	of	the	university	campus.	Any	PNG	textures	can	be	easily	implemented	in	this	map	
editor;	we	will	be	sourcing	ours	primarily	from	Open	Game	Art11.	

			 	

																																																																				
2	Oracle	Corporation.	“Java,”	www.java.com.	[Online].	Available:	https://www.java.com/en/.	[Accessed:	Oct.	28,	2016].	
3	GitHub.	“Github,”	github.com.	[Online].	Available:	https://github.com/.	[Accessed:	Oct.	28,	2016].	https://github.com/	
4	Namecheap.	“Namecheap,”	www.namecheap.com.	[Online].	Available:	https://www.namecheap.com/.	[Accessed:	Oct.	28,	2016].	
https://www.namecheap.com/	
5	Jekyll.	“Jekyll,”	jekyllrb.com.	[Online].	Available:	https://jekyllrb.com/.	[Accessed:	Oct.	28,	2016].	
6	Ruby.	“Ruby,”	www.ruby-lang.org.	[Online].	Available:	https://www.ruby-lang.org/en/.	[Accessed:	Oct.	28,	2016].	
https://www.ruby-lang.org/en/	
7	Google.	“Google	Drive,”	www.google.com.	[Online].	Available:	https://www.google.com/drive/.	[Accessed:	Oct.	28,	2016].	
8	Google.	“Google	Docs,”	docs.google.com.	[Online].	Available:	https://docs.google.com/.	[Accessed:	Oct.	28,	2016].	
9	Google.	“Google	Hangouts,”	hangouts.google.com.	[Online].	Available:	https://hangouts.google.com/.	[Accessed:	Oct.	28,	2016].	
10	T.	Lindeijer,	et	al.	(2008).	“Tiled”.	Tiled	Map	Editor	[Online].	Available:	http://www.mapeditor.org/.	[Accessed:	Oct.	28,	2016].	
11	Open	Game	Art.	“OpenGameArt.org,”	opengameart.org.	[Online].	Available:	http://opengameart.org/.	[Accessed:	Oct.	28,	2016].	



Software Engineering Project: Assessment 1	
Gandhi-Inc. - Project Blind World	

	

3	

Organisation	
	

The	team	was	organised	in	such	a	way	that	the	deliverables	were	distributed	across	members,	where	a	pair	
or	a	trio	would	work	on	a	single	deliverable	when	possible.	At	other	times,	deliverables	would	be	developed	
by	 a	 single	 team	 member.	 The	 team	 member	 chosen	 for	 each	 section	 was	 chosen	 because	 of	 their	
particular	skill	set,	eg	software	development	or	risk	assessment.		

Firstly,	due	to	the	rushed	nature	of	the	project,	it	was	deemed	necessary	for	the	workforce	to	be	utilised	as	
much	 as	 possible12,	 in	 order	 to	 make	 the	 best	 use	 of	 time.	 The	 obvious	 consequence	 of	 such	 method,	
however,	 is	 that	 merging	 developed	 content	 from	 separate	 sources	 can	 result	 in	 clashes	 related	 to	
contrasting	 expectations	 and	 opinions.	 This	 issue	 was	 addressed	 by	 having	 frequent	 team	 meetings	
throughout	the	week,	where	members	can	discuss	each	other’s	work	while	updating	their	own	content	at	
the	 same	 time,	 ultimately	 synchronising	 their	 progress	 13.	 It	 was	 also	 possible	 to	 remediate	 the	 lack	 of	
synchronicity	through	usage	of	the	collaboration	tools	aforementioned14.	

The	 team	 found	 that	 the	 most	 reliable	 way	 to	 produce	 reasonable	 amounts	 of	 content	 per	 week	 is	 to	
organize	regular	meetings.	Though	there	was	no	formalised	objective	regarding	how	often	such	meetings	
should	happen,	the	team	often	met	three	times	throughout	the	week,	including	the	compulsory	practicals.	
It	was	 found	 that	 for	Assessment	1,	 this	 sort	of	approach,	 including	work	 that	was	done	outside	of	 such	
meetings,	generated	enough	workload	to	have	the	deliverables	equally	developed	across	team	members,	
and	 at	 a	 pace	 steady	 enough	 such	 that	 no	 crunch15	 would	 be	 made	 necessary	 close	 to	 the	 deadline.	
Obviously,	crunching	is	naturally	undesirable.	

With	regards	to	the	team	itself,	the	chosen	approach	also	works	well	due	to	the	fact	that	the	bulk	of	the	
synchronisation	depends	on	three	members	at	the	most:	as	a	trio	works	on	a	single	deliverable,	it	is	usually	
easier	 to	 reach	 a	 consensus	 that	 only	 depends	 on	 three	 individuals	 rather	 than	 five,	 which	 is	 the	 total	
amount	of	 team	members.	As	a	matter	of	 fact,	 this	makes	 it	so	that	 it	 is	often	(if	not	always)	possible	to	
collaborate	remotely	[3],	and	later	on	making	use	of	the	meetings	to	practise	peer-reviewing	on	top	of	the	
other	members’	work,	ultimately	leading	to	a	globalized	team-wide	agreement.	Furthermore,	in	the	event	
that	a	single	member	works	on	a	section	of	the	project,	we	believe	that	lacking	the	need	to	spend	time	with	
organising	 grouping	 arrangements	 (as	 pairs	 and	 trios	 did)	 contributes	 towards	 increased	 individual	
productivity.	In	addition,	a	carefully	thought-out	choice	of	which	team	member	would	work	independently	
can	 result	 in	 increased	productivity,	especially	 if	 such	member	has	a	particularly	high	 level	of	experience	
related	to	the	assigned	task,	if	compared	to	others16.	

For	 further	stages	of	 the	project,	 it	 is	 likely	 that	 this	same	approach	will	 remain	appropriate,	as	 frequent	
meetings	are	compatible	with	 the	Scrum	methodology.	 It	 is	expected,	however,	 that	 the	 implementation	
phases	might	spawn	several	micro-tasks,	which	wouldn’t	be	undertaken	by	more	than	one	team	member,	
but	spread	out	across	the	team.	The	necessity	of	merging	work	together	would	then	be	handled	by	both	
our	source	control	methods,	and	team	meetings.	
																																																																				
12	G.	Wigglesworth	and	N.	Storch,	"Pair	versus	individual	writing:	Effects	on	fluency,	complexity	and	accuracy"	Language	Testing,	vol.	26,	no.	3,	pp.	
445-466,	July	2009.	
13	G.	Parker,	Team	players	and	teamwork.	San	Francisco,	CA:	Jossey-Bass	Publishers,	1990.	
14	J.	Nunamaker,	et	al.,	"Principles	for	effective	virtual	teamwork"	Communications	of	the	ACM,	vol.	52,	no.	4,	pp.	113-117,	April	2009.	
15	 J.	 Brown,	 et	 al.	 (2004/2005).	 "Crunch	 Mode:	 programming	 to	 the	 extreme".	 Stanford	 Computer	 Science	 [Online].	 Available:	
https://cs.stanford.edu/people/eroberts/cs181/projects/2004-05/crunchmode/index.html.	[Accessed:	Nov.	02,	2016].	
16		G.	Hill,	"Group	versus	individual	performance:	Are	N?+?1	heads	better	than	one?"	Psychological	Bulletin,	vol.	91,	no.	3,	pp.	517-539,	May	1982.	
	



Software Engineering Project: Assessment 1	
Gandhi-Inc. - Project Blind World	

	

4	

Planning	for	the	Future	
Following	the	Scrum	methodology,	the	team	shall	first	 identify	which	tasks	should	be	prioritised	in	each	stage,	
that	 is,	 the	ones	which	have	 the	highest	amount	of	dependent	 tasks.	The	amount	of	marks	awarded	 for	each	
deliverable	 shall	 also	 be	 considered	 while	 defining	 priorities.	 Concerning	 Assessment	 2,	 the	 implementation	
deliverable	 is	 the	 most	 important	 one:	 the	 GUI	 report,	 the	 testing	 report,	 the	 implementation	 report,	 the	
website,	 and	 some	of	 the	 architecture	 depends	 on	 it.	 As	 such,	 the	 team	will	 prioritise	 the	 completion	 of	 the	
implementation,	while	still	working	on	other	tasks	which	do	not	depend	on	it.	

The	schedule	for	the	execution	of	Assessment	2	shall	be	the	following:	

Task	(in	decreasing	order	of	priority)	 Earliest	starting	date	 Latest	finishing	date	

Implementation	 09/11/2016	(by	noon)	 10/01/2017	

Architecture	report	 09/11/2016	(by	noon)	 17/01/2017	

Updates	on	Assessment	1	 09/11/2016	(by	noon)	 24/01/2017	(by	noon)	

Implementation	report	 10/12/2016	 24/01/2017	(by	noon)	

Testing	report	 01/01/2017	 24/01/2017	(by	noon)	

GUI	report	 01/01/2017	 24/01/2017	(by	noon)	

Website	 10/01/2017	 24/01/2017	(by	noon)	

Figure	2:	a	table	illustrating	the	proposed	plan	for	Assessment	2.	

As	we	have	created	a	very	abstract	architecture	in	the	design	stage,	we	feel	that	creation	of	a	Gantt	chart	or	task	
dependency	diagram	would	be	unmerited.	Instead,	we	have	used	a	very	general	overview	of	when	we	need	the	
main	tasks	to	be	completed	to	finish	on	schedule.	

As	stated	previously,	the	implementation	deliverable	shall	be	prioritised.	Its	earliest	starting	date	will	be	the	day	
Assessment	 1	 is	 submitted,	 but	 its	 latest	 finishing	 date	was	 chosen	 to	 be	 two	weeks	 before	 the	 deadline	 for	
Assessment	 2:	 the	 team	 needs	 some	 dedicated	 time	 to	 work	 on	 the	 deliverables	 which	 depend	 on	 the	
implementation	being	as	complete	as	possible.	In	any	case,	the	earliest	starting	date	for	such	dependent	tasks,	
like	the	implementation	report	or	the	testing	report,	was	set	to	later	phases	of	the	implementation,	when	it	 is	
expected	that	there	will	be	enough	implementation	content	developed	to	start	a	reasonably	adequate	report.	

Regarding	tasks	which	mostly	do	not	depend	on	the	 implementation,	 their	earliest	starting	date	was	set	 to	as	
soon	 as	 possible,	 like	 the	 architecture,	 for	 instance.	However,	 after	 the	 implementation	 is	 finished,	we	might	
need	 to	go	back	and	alter	 some	of	our	architecture	due	 to	development	 issues,	or	possible	 changes	of	plans.	
Consequently,	 the	 latest	 finishing	date	 for	 the	 architecture	was	 set	 to	be	 a	week	after	 the	 implementation	 is	
done,	so	that	we	can	make	the	last	definitive	changes	before	submission.	

We	can	see	that	the	critical	path	of	Assessment	2	would	take	exactly	76	days	to	complete.	

The	 team	 aims	 to	 follow	 a	 similar	model	 for	 future	 assessments,	 by	 deciding	 which	 deliverable(s)	 should	 be	
prioritised	and	then	building	a	schedule	on	top	of	that.	It	is	expected	that,	like	Assessment	2,	future	assessments	
will	also	require	the	implementation	to	be	prioritised,	due	to	it	having	many	dependent	tasks.	


